
HOW DO EXPLICIT SPECIFICATIONS, A
TEST-FIRST APPROACH, AND PROCEDURAL

GUIDANCE TO CONVERT SPECIFICATIONS TO
TESTS, HELP TO IMPROVE CODE QUALITY

AMONG STUDENTS
‘SHALL WE DEFINE BLACK-BOX TESTS FOR THIS

ASSIGNMENT? WE HAVE TO TEST IT ANYWAY ’

by

Arno Broeders

in partial fulfillment of the requirements for the degree of

Master of Science
in Software Engineering

at the Open University, faculty of Science
Master Software Engineering

to be defended publicly on Day Month DD, YYYY at HH:00 PM.

Student number: 852104184
Course code: IM9906
Thesis committee: dr. ir. Sylvia (S.) Stuurman (chair), Open University

dr. ir. Harrie (H.J.M.) Passier (supervisor), Open University
prof. dr. Lex (A.) Bijlsma (supervisor), Open University

ACKNOWLEDGEMENTS

Graduating in a time of COVID-19 with lock-downs, no physical education and hardly any
contact with my students involved in my research has cost me a lot of effort. Besides this
graduation assignment I had many extra coordinating tasks that were necessary for the
continuity of education of our Computer Science department at Avans Hogeschool Breda
during these COVID-19 time. For me this time was characterized as stressful and exhaust-
ing where I often seeked for a spark of energy to continue working on my research.

Without a vast number of people who have continuously supported and motivated me
during my research and writing of my thesis, I certainly would not have succeeded. While I
owe my thanks to all of these people, there are a handful of people that I explicitly want to
name.

First of all, I would like to express a very warm word of thanks to my thesis committee;
chair dr. ir. Sylvia Stuurman and my supervisors dr. ir. Harrie Passier and prof. dr. Lex Bi-
jlsma to let me graduate at their department. I would not have been able to complete this
research without your support and motivational words. Thank you for all the tips, feed-
back, and your words of encouragement if my research was a bit disappointing on certain
points.

I would like to thank my colleagues in the Computer Science program at Avans Hogeschool
Breda for their interest in my research and their motivating words. Thank you for doing
some of the tasks that I was unable to do during my Master study.

My sincere thanks to my direct colleagues in programming education who were directly
involved in my research, ir. Ruud Hermans and ir. Dion Koeze. Thank you for your flexibil-
ity, for adopting the new teaching materials and for your time to argue and provide critical
feedback on my research.

Last but not least, I am profoundly grateful to my wife Tew and our children Alex and
Jasmine. Thank you for being there for me when we celebrated successes, but also for being
there for me when I was sometimes frustrated or grumpy because things were not going the
way I wanted. Often a loving look from you was enough to give me new energy, or to make
me realize that I had to rest and move on another time. Thank you for your motivational
words that finally got me across the finish line.

November, 2021
Arno Broeders

i

SUMMARY

As CS instructors, we want to deliver skilled professionals to the business world. Learn-
ing to program is often underestimated, not only by educators, but also by students them-
selves.

One of the programming-skills students must develop is quality awareness. One of the
most important quality requirement is the correctness of the software that is developed.
Students should ask themselves "When is the software I coded performing correctly?". This
question is not so easy to answer because there is a discrepancy in the concept of correct-
ness between the students and the professionals.

If we ask professionals: "When is software working correctly?", they will answer: "Soft-
ware that works exactly according to specifications and is free of bugs.". Students are often
satisfied when the output at a given value (roughly) matches what is expected and they tend
to accept occasional bugs.

But what are those specifications? Often these are problem descriptions in natural lan-
guage that must be solved by the software. Specifications in natural language are often
not free from ambiguity and leave room for assumptions. That makes it difficult for novice
programmers to code software and judging correctness.

In our research we will provide the students more formal specifications, leaving out
room for ambiguity and assumptions. In these given specifications we may not only as-
sume expected input, but unexpected input must also be specified for handling the right
way. For documenting these specifications we will use the JML-standard.

In order for students to guarantee correctness of their code, we have to put them to
testing. These semi-formal JML-specifications provide a structure that is easy to transfer
to a set of automated tests. To help students transferring these JML-specifications to test-
suits, we provide procedural guidance.

We will of course introduce these concepts extensively in updated teaching materials.
And we test the result of this new methodology in a practical assignment.

The results from this practical assignment are promising. We see that adding semi-
formal JML-specifications together with the training and procedural guide leads to more
complete test sets and that the coded implementations score higher on correctness if test
sets based on these specifications and procedural guide are made beforehand.

We also looked at the quality awareness of the students six months later. We see that
the knowledge in the field of specifications and testing has remained, but that students no
longer actively practice testing. We are somewhat disappointed in this, but our analysis, to-
gether with other academic research, gives us leads to investigate this further in the future.

ii

CONTENTS

Acknowledgements i

Summary ii

1 Introduction 1

2 Background and Related Work 3

3 Research Questions and Methodology 7

4 Results 19

5 Conclusion 41

Bibliography 45

Appendix A: Procedural Guide 48

Appendix B: Lesson Material 50

Appendix C: The ’Milestone 6’ assignment instructions 79

iii

1
INTRODUCTION

Novice students in software engineering find solving even small problems in code extremely
difficult. As CS instructors, we have to accept students have to go through some phases be-
fore understanding code quality and delivering the optimal quality in assessments. The
first starting point of code quality for novice students is the correctness of code.

Novice students, starting to develop their coding skills often believe that their code is
correct if it compiles. Michaeli and Romeike [2017] illustrates this clearly in their learning
process view. They define five levels of comprehension in regards to software quality. The
first novice level is when the compilation of code succeeds; students believe their code is
correct. Where after a short time an output that looks plausible for a set of input values,
without properly checking the results with the specifications, the software is already seen
as working correctly. The achieved next step is when code has expected output based on
some provided sample data, this was also found by Edwards [2004a]. Concerning software
quality, this will still not justify code correctness. The next three levels give the student the
understanding that testing has a quality-enhancing effect, but testing is still difficult for
students. Bijlsma et al. [2021] state students often try to get their code correct using a trial
and error approach. We see this behavior in many students from observations in class when
tests are provided together with an assignment. They believe the code will be correct if the
tests pass at some point, not knowing if there are sufficient test-cases in the suit to prove full
correctness. However, more importantly, this trial and error behavior appears to adversely
affect the analysis and understanding of the code constructions Bijlsma et al. [2021]. The
ease with which they fiddle and try to get the tests passed seems to block analysis skills.
Edwards [2004a] states that students must master basic comprehension and analysis skills;
otherwise trial and error will become a handicap.

As instructors, we would like to see that students master comprehension and these
analysis skills that result in awareness about code quality and not solely about passing tests.
It makes sense to let students write their tests to gain these skills and awareness of code
quality in this way.

The next hurdle is getting students to test. In our experience, students do not take tests
of their own free will. Even if testing is mandated in assignments, it is often not performed.
When rewarding tests with a bonus grade, tests are still not made often, or quickly rushed to
get the bonus leading to uncomplete testsets. Desai et al. [2008a] adds that despite mandat-
ing testing, students continue to see it as an unnecessary burden. This is also a conclusion

1

by Scatalon et al. [2017b] who did a literature review on papers concerning software testing
in an academic setting.

Although it is difficult to get students to test, we are firmly convinced that early learn-
ing of testing will positively influence software quality if students see its usefulness. With
this research we want to see if we can alleviate the burden of testing by providing the stu-
dents different tools. In addition, we want to pay explicit attention to external code quality,
specifically the correctness of the code.

Tests come in 2 main variants Myers et al. [2012]. White-box tests are tests that are writ-
ten afterward to identify flaws in the implementation. By analyzing the implementation
code all execution paths are followed to derive the test data. In many cases the test data
will be derived at the neglect of the specifications so that any imperfections in the imple-
mentation will be taken over in the tests. Assessing correctness using these tests, therefore,
seems less obvious.

Black-box tests are defined without looking at the implementation. They can be written
before coding the implementation, but writing them after the implementation was made
is possible too. The black-box tests usually form the specification for the implementation
if they are written upfront the implementation and are well suited for a test-first approach.
Well defined black-box tests will prove the correctness and completeness as part of the ex-
ternal code quality, of the implementation code. The challenge is, when is the set of tests
sufficiently fully defined? If students write black-box tests based on the problem descrip-
tion, some cases are easily overseen; it results easily in happy-path testing leading to in-
complete test-suites and thus incomplete specifications, as already shown in the Edwards
[2004a] study. This way the expected increase in external code quality is not always met.

We believe that by making new students aware of external code quality, specifically the
correctness of the code, students become more critical of their implementations. Black-
box testing in the form of TDD supports this philosophy. We hypothesize that providing
explicit informal specifications that cover the input variables of equivalency classes and all
the boundaries should help students write well-defined test-suites without thinking about
the implementation. By providing training on this from the start, directly after they master
the first programming essentials, we believe that we give students new skills to grow into
better software engineers.

Of course, we are not the first educators to plan quality improvements through testing
in education. As mentioned before, we also have some hurdles to overcome. This makes
it essential first to investigate what has already been done in this area, so we can add new
insights to the box of knowledge. Chapter 2 discusses interesting findings that are useful for
our research. Chapter 3 will formulate research questions and the methodology going to
be used, to see whether we can add new results based on our methodology outside existing
science. Chapter 4 then presents the process during the methodology of the research and
the results. In chapter 5 we will form a conclusion and propose future work.

2

2
BACKGROUND AND RELATED WORK

The effects of testing on code quality among academic students have been studied by many
researchers already. Most studies indicate that integrating tests in education has a quality-
enhancing effect on the coding skills of the students Desai et al. [2008b].

Many novice students believe testing is done by compiling, running and validating the
output manually against expectations Michaeli and Romeike [2017]. The next logical step is
to teach students how to use automated tests and that they are useful for regression testing.
Automated tests consist of so-called test-suites with unit-tests covering a unit of work like
a class or method. Doorn [2018] has found that only half of the universities in the Nether-
lands teach unit-testing in their curriculum, even though most teachers and students con-
sider this an important topic.

Automated testing can be categorized into two forms, white-box and black-box tests
Myers et al. [2012]. White-box tests are tests that are based on the units already coded.
Often they are created by following code execution paths and determining the test variables
on the implementation logic. We see that this is not so effective as we would like. Edwards
and Shams [2014] have shown that students with white-box tests achieve a considerable
code coverage, but that most of the tests are happy-path testing. If test input variables are
based on the already coded implementation it seems obvious that not all of the possible
bugs are going to be found.

In contrast to White-box tests, black-box tests are not based on implemented code but
the foreseen implementation specifications or problem description. Leventhal et al. [1994]
discovered in their thinking-aloud study with students that students are positively biased
when creating tests. Students make assumptions that can detract from correctness. If the
problem domain is known, the assumptions can still yield some useful tests, but it does not
guarantee a certain amount of correctness and completeness. In these cases many test-
cases could be overseen.

3

2.1. COMPLEX LEARNING
Learning to solve real-world problems in computer algorithms and defining them in code is
difficult for novice students in computer science. It requires programming language skills,
abstracting problem situations, and creating algorithms that solve these problems under
different variables. Van Merrienboer and Krammer [1987] describes various tactics of how
instruction in programming could be most efficient for courses in high school.

For writing black-box tests this complexity is no different. Converting external speci-
fications to black-box tests is a complex task. Next to conceptual knowledge, knowledge
about coding, also knowledge about applying procedures is needed for students to apply
such a procedural guide. van Merriënboer and Kirschner [2007] has provided ’Ten Steps
To Complex Learning’ to design educational materials for obtaining such complex skills.
These ten steps help to design these educational materials following the four components
that are needed to master complex skills:

1. Learning tasks; these are tasks that integrate skills, knowledge, and attitudes. They
are organized from simple to complex, and support is diminished in each subsequen-
tial task.

2. Supportive information; is a guide that provides strategies for non-routinely learn-
ing tasks.

3. Procedural information; provides an algorithm for solving repetitive learning tasks.

4. Task practise; mastering the skills by repetitive exercises.

2.2. WHAT IS TEST-DRIVEN DEVELOPMENT?
Test-Driven Development or TDD is a principle that originated from the software develop-
ment methodology extreme programming Beck [1999]. It integrates black-box unit-testing
tightly with writing implementation code. Before any code is written for the implemen-
tation, a suite of tests is created to cover the problem description. That is why it is called
test-first. After writing the tests, the tests are seen as specifications for the implementation.
Next, the implementation is written until all tests pass. A next optimization step is to refac-
tor code so that the resulting code is readable and has the lowest possible complexity Beck
[2003].

An important aspect of concentrating on testing first is that no implementation code
has been created yet. Because no implementation exists when the tests are written, any
thinking errors can arise during the implementation are not automatically taken over in
the tests. Tests are based on equivalent class tests, assumed that the program algorithm has
the same effect on a related set of inputs. To cover the exceptions to the equivalent classes,
the series of inputs where the algorithm should start to behave differently are provided as
boundary tests.

4

2.3. HOW DOES TDD HELP IN IMPROVING SOFTWARE QUALITY
If we are talking about software or code quality, we have to distinguish two different quality
definitions.

• External code quality. These are various quality parameters that can be measured at
the outside of the software unit. Think about performance of the software unit, but
also the correctness of the code is an important aspect. Does the code do what we
want, and are the exceptions to the happy-path correctly handled. If we are talking
about unit-testing we have to explicitly specify the different cases, happy-path, and
also including the exceptions to obtain a certain level of completeness in our test-
suite. Only then can we guarantee the intended correctness of our implementation.

• Internal code Quality. This covers the maintainability of the code. How well is it
structured, how complex is the code, is the code easy to read and maintain. Internal
code quality is usually obtained by the refactoring step of the TDD methodology.

For our novice students we will find code correctness, of the external code quality, the most
important aspect to start with.

Bissi et al. [2016] did literature study about the effectiveness of TDD. They collected
1107 articles between 1999 en 2014 about TDD and examined 27 of them in depth. They
found that 88% of the studies identified an increase in code quality when applying TDD.
If we concentrate on professionals and look at the Bhat and Nagappan [2006] study on
the quality effects in industrial environments, we see that the effects on code quality are
significant positive. Not all TDD studies are equally positive, Scanniello et al. [2016] found
that TDD improves productivity at the cost of the internal quality due to the quick and dirty
implementations to let the tests pass and not enough refactoring to increase the internal
code quality. They found that a white-box test-last approach yields better internal quality
than TDD.

2.4. TDD IN EDUCATION
A significant difference between professionals and novice students is experience. This dif-
ference is seen in the impact of TDD on code quality in general. Studies among profession-
als more often seem to measure a positive effect on code quality as studies in an academic
setting as concluded by Bissi et al. [2016]. From the eight studies of the quality impact
with TDD in academics that Bissi et al. [2016] selected in his literature review, six studies
concluded an increase in code quality, and one did not sense an increase but also did not
negatively impact code quality.

The study ’Towards empirical evaluation of test-driven development in a university
environment’ of Pancur et al. [2003] compares TDD with a white-box testing variant and
grades the improvements by TDD negative. This study was conducted with approximately
40 students. Half of the students used the white-box test-last approach and performed
slightly better. One interesting result from this study is that students in the TDD group find
TDD more helpful in requirements understanding and increasing code quality than stu-
dents from the test-last group. We hope if we teach students a test-first approach in this
study that students are more inclined to make testing their own because requirements will
be better understood. Note that the results of this study by Pancur et al. [2003] were pre-
liminary because of the overlap in time with the publishing of the article and analyzing the

5

experiment results. Therefore we find this article not entirely valid. After reading this arti-
cle, we also find it unclear if only external code quality, specifically correctness, is measured
or if there is a mix-up with internal code quality.

When teaching novice students to code we find external code quality, namely the cor-
rectness aspect of code more important than internal code quality. In more advanced
courses we will focus more on internal quality and maintainability of code. The use of a
test-first approach seems justified because of this reason in novice courses.

Polikarpova et al. [2013] takes it one step further and uses strong formal specifications
for the problem analysis and convert them to black-box tests automatically. They found
that these black-box tests based on strong specifications double the amount of found bugs
at reasonable effort.

Formal specification will be too academic for Universities of Applied Science and also
some properties will be very hard to describe formally, so we cannot use this automatic
conversion. Not using automatic conversion is not a problem, we believe that manually
converting specifications could trigger more awareness of common pitfalls in test cases. If
we provide semi-formal specifications in the form of JML (Java Modelling Language) and
specify the pre- and postconditions in java pseudo-code we think we give the students a
useful tool that allows them to easily develop tests with less complexity involved.

6

3
RESEARCH QUESTIONS AND

METHODOLOGY

To help novice students in their journey to become good software engineers, we, as CS
educators, want students to write correct code. In addition to the correctness of code, we
want students to be aware of this software quality aspect and critically and analytically look
at their code.

In this research we want to limit our scope of software quality to correctness aspect of
the external code quality. We think the other code quality parameters are more suitable for
the more advanced students.

We believe that a test-first approach helps students increase their awareness of software
quality, and we also believe that providing explicit stated informal specifications helps stu-
dents increase their analytical skills by reducing the complexity of transferring a problem
description to implementation logic at this stage. If the provided specifications are com-
plete, we can provide students with a procedural guide to convert these specifications into
a complete suite of black-box tests. Students have to follow the guide step-by-step to trans-
fer the specifications to a fully defined test suite without too much complexity so they can
focus on input variables derived from the specifications and learn to automate the writing
tests process. If this results in correct and complete test suites, the external code quality
will also increase according to our hypothesis. We also hope that this way students will be
more willing to write tests with little effort so that they will produce higher quality code.

Although a test-first approach is automatically a black-box test and TDD focuses on
defining tests before the implementation, we will explicitly use the term test-first in this
research. We use the term test-first because black-box tests can also be written after the
implementation was made, and we do not use the term TDD because TDD is more than
simply defining and writing tests upfront. Even better would be the term test-first specifi-
cation driven testing, because tests are going to be designed based on the provided JML-
specifications. For simplicity reasons we just use test-first.

The big difference with other research is that we investigate the effects of provided
explicit informal specifications and provide students a procedural guide to transforming
these specifications into black-box tests. Therefore we will answer the following research
question to validate our hypothesis:

7

How do explicit specifications, a test-first approach, and procedural guidance to con-
vert specifications to tests, help to improve code correctness among students?

To conduct this research, we are expanding the current ’Programming 2’ course with
two lessons on software quality and testing. Each lesson consists of two hours of theory
and three hours of supervised practice in small study groups of approximately six students.
A total of ten hours of education is therefore invested in software quality and testing in this
novice course.

The existing group assignment ’CodeCademy’ that is already in this course to assess
programming skills, will be expanded with an explicit test component. To prevent students
from showing procrastination and to provide them with feedback early, there is an option
for students to follow a set time path in milestones in which they each deliver a partial
product and receive early feedback on this. We have packaged the test assignment that is
used in the context of this research in ’Milestone 6’.

The ultimate goal of these two lessons and the ’Milestone 6’ assignement would be that
students become quality conscious and deliver high quality code. Because of this, we will
not only examine the products of these assignments but also the behavior of the students
during and after the ’Milestone 6’ assignment. To analyze the behavior of students during
the ’Milestone 6’ assignment we will ask them to record the development environment and
verbal communication and send these in as part of the assignment. This recording will be
refered to as the ’thinking-aloud’ assignment. To analyze the behavior afterwards, we will
conduct interviews and examine if students will write automated tests by themselves in
other assignments or projects. To examine all these elements and structure our research
we will break-down this question in the following sub-questions:

RQ1: What does a procedural guide to transfer external specifications to black-box
tests look like and are there minimum requirements for the external specifications.

Polikarpova et al. [2013] uses formal specifications that are to be automatically con-
verted to suites of black-box tests. It means that there is an algorithm that does so. Our
target group are first-year students of a University of Applied Science for which formal
specifications could be too academic. In addition to the academic character, it is very diffi-
cult to formally describe certain conditions or states in software. Using more informal but
complete specifications prohibits automatic conversion to black-box tests, but students’
interpretation, together with a procedural guide should be enough to let the students write
their well-defined suite of black-box tests. We will design such a step-by-step procedural
guide that students can use to write such a suite of black-box tests that are based on less
formal external specifications. To help students even more, we will partition the input vari-
ables into equivalency classes so students only have to think about inputs variable in the
range and at the boundaries of these equivalency classes. By providing also subcontracts
for illegal preconditions we omit the fact that students tend to write only happy-path tests
and make them aware that also invalid preconditions need tests for adequate exception
handling.

Method: First of all we examined the JML format for the specifications. This JML format
allows us to write down explicitly the pre- and postconditions and also any exceptions that
may occur at a specific precondition. To remove unnecessary complexity at this stage of the

8

course we provide the partitioned equivalency classes of these specifications so our novice
students do not have to think about partitioning themselves. We investigated step-by-step
what would be needed to setup a well-designed test suite. Therefore we made several test-
suites upfront by our self (the teacher-set for the ’Milestone 6’ assignment) and identified
the following five main concepts:

• Prepare the testsuite/project.

• Design tests for each subcontract

• Code the tests

• Code the implementation

• Test the implementation

Each of these main concepts consists of small steps to complete each of these concepts.
These small steps are written down, categorized by concept and numbered so that stu-
dents can go through all the steps one-by-one and repeat the step-by-step guide until the
complete specifications of the method have been converted into a complete test set. To
make this procedural guide even more useful for students, a glossary of terms from the test
lessons has been added to the procedural guide. For the completed guide see Appendix A.

RQ2: How do we teach students to apply the procedural guide to create a complete
test-first-suite from external specifications.

If we want to activate students to develop through a test-first approach, then we must
ensure that students see the importance and benefits of this methodology. We need to
teach them what external code quality means in terms of correctness and completeness to
create support for this methodology. Novice students find it difficult to define black-box
tests without thinking about the implementation details, especially when only a problem
description is given. Therefore we teach them step-by-step on how to convert semi-formal
external specifications into black-box tests using the procedural guide. We develop the in-
structions inspired by the four component instructional of van Merriënboer and Kirschner
[2007]. We supply supportive information and we practise step-by-step the assignments,
where with each practice iteration we drop a piece of given information so that the students
learn to automate the definition and writing of tests in a natural way. We hypothesize that if
the process is easy enough, students stop thinking about implementation when converting
the external specifications into the black-box test-code. Analyzing the exercises’ test-code
and analyzing the ’thinking-aloud’ recordings afterward will give insight into how much
this skill to transfer the external specifications into black-box tests routinely is matured.

Method: Because we have two lessons in two consecutive weeks, we split the lectures
of theoretical content into two distinct subjects and let the students practise directly after
the lectures. Lesson one will cover the concept of code quality, correctness and the design
of test cases, while lesson two will focus on the use of JUnit to automate the test-cases.

Lesson one starts with ’the need for software quality’. We will ask the students to anal-
yse a piece of black-box software for correctness without giving the full specifications for
the software. The only specification students have in hand is the name of the software-
unit ’calculateAge’ and the parameter that is required in the form of <dd-mm-yyyy>. The
software-unit contains intentional mistakes, but behaves correctly in certain situations.

9

The code in Listing 3.1 was compiled to a class file and students are asked to analyse this
software-unit by executing ’java calculateAge <dd-mm-yyyy>’ from the commandline, not
knowing any implementation details.

import java.time.LocalDate;
import java.time.Month;
import java.time.format.DateTimeFormatter;

public class calculateAge {
public static void main(String[] args) {

LocalDate date = LocalDate.parse(args[0],
DateTimeFormatter.ofPattern("d-M-yyyy"));

int age = LocalDate.now().getYear() - date.getYear();
System.out.println("Als je geboren bent op " +

date.format(DateTimeFormatter.ofPattern("d-M-yyyy")) + " ben je "
+ age);

}
}

Listing 3.1: calculateAge method used for black-box testing

We predict that a significant amount of students will state that the provided black-box
software-unit is correct as students tend to check this assignment only with their own date
of birth. As seen in the source-code, there is an intentional mistake to only subtract the
dates year components to calculate the age. This only leads to correct results if their birth-
day has already passed in the current year.

The outcomes of this exercise gives a clear view on why testing multiple partitions of
equivalency classes is important. It also provides a starting point for teaching the essence
of clear specifications and not to make assumptions. We will confront students with the
question why they assume the age in years when the unit should actually return the age in
months, making the implementation even more incorrect. Without specifications we can
only guess the intended operation.

Figure 3.1: Test template

After this first part we are going to deal with specifications in JML-format, pre-conditions,
post-conditions, exceptions and oracles. We use the specifications of the software-unit

10

’daysUnitilNextBirthday’ as example and cover step by step the different subcontracts of
the specifications and the intended behaviors of this method. We omit the leap year for
complexity reasons, but provide it as extra exercise to students looking for extra challenge.

We give the specification in Listing 3.2 to the students and we will design sufficient test-
cases for each subcontract together during the lesson. We write down these test-cases on
paper without actually applying them at this stage. To help students in designing test-cases.
A stripped-down version of the procedural guide is provided with only the steps to design
the test-case and outcome of the oracle. For the design of the tests the template in Figure
3.1 is provided to the students:

/**
* @desc Calculates the amount of days until the next birthday of dateOfBirth.
*
* @subcontract: not born yet {
* @requires dateOfBirth > LocalDate.now();
* @signals (IllegalArgumentException) dateOfBirth > LocalDate.now();
* }
*
* @subcontract: null dateOfBirth {
* @requires dateOfBirth == null;
* @signals (NullPointerException) dateOfBirth == null;
* }
*
* @subcontract: birthday is yet to come this year {
* @requires LocalDate.now().getMonthValue() < dateOfBirth.getMonthValue()
* ||
* LocalDate.now().getMonthValue() == dateOfBirth.getMonthValue() &&
* LocalDate.now().getDayOfMonth() < dateOfBirth.getDayOfMonth();
* @ensures \result = #days until (not including) next birthday &&
* 1 <= \result < 365;
* }
*
* @subcontract: today is my birthday {
* @requires dateOfBirth.getMonthValue() == LocalDate.now().getMonthValue()
* && dateOfBirth.getDayOfMonth() == LocalDate.now().getDayOfMonth();
* @ensures \result = 365;
* }
*
* @subcontract: birthday has already passed this year {
* @requires dateOfBirth.getMonthValue() > LocalDate.now().getMonthValue() ||
* dateOfBirth.getMonthValue() == LocalDate.now().getMonthValue() &&
* dateOfBirth.getDayOfMonth() > LocalDate.now().getDayOfMonth();
* @ensures \result = #days until (not including) next birthday &&
* 1 <= \result < 365;
* }
*/

public static int daysUntilNextBirthday(LocalDate dateOfBirth);

Listing 3.2: JML-specifications for daysUntilNextBirthday

11

After defining all the different testcases based on the specification we will provide the
compiled class-file from Listing 3.3 to students to let them analyse in command line the
correctness based on the prepared test cases.

import java.time.LocalDate;
import java.time.Period;
import java.time.format.DateTimeFormatter;

public class daysUntilNextBirthday {

public static void main(String[] args) throws Exception {
LocalDate date = LocalDate.parse(args[0],

DateTimeFormatter.ofPattern("d-M-yyyy"));

if(date.isAfter(LocalDate.now())) {
throw new IllegalArgumentException("dateOfBirth cannot be in the

future");
}

int days = 0 - Period.between(LocalDate.of(LocalDate.now().getYear(),
date.getMonth(), date.getDayOfMonth()), LocalDate.now()).getDays();

if(days<0) {
days += 365;

}
System.out.println("It takes " + days + " days until your next

birthday (born on: " + args[0] + ")");
}

}

Listing 3.3: daysUntilNextBirthday method used for black-box testing

The powerpoint slides of the lecture are show in Appendix B. After class there is a three
hour guided workshop where students practice preparing tests, fill them in on ’paper’ in a
given template and afterwards test a black-box compiled unit of software via the command
line.

Following assignments (Listings 3.4, 3.5) are given to the students, these JML specifica-
tions are provided to the students along with a set of compiled class-files (Listings 3.6, 3.7),
so students can apply their designed tests on the implementation themselves. The imple-
mentations are hidden and they all contain some intentional bugs for the students to find.

/**
* @desc A company orders an application that needs to calculate the annual
* bonus of its employees. This bonus is a percentage of their monthly
* salary, and depends on how long they have worked for the company.
*
* @subcontract: negative years in service {
* @requires yearsInService < 0;
* @signals (IllegalArgumentException) yearsInService < 0;
* }

12

*
* @subcontract: less than three years at the company yields a bonus of 0% {
* @requires 0 <= yearsInService <= 3;
* @ensures \result = 0;
* }
*
* @subcontract: more than three years at the company yields a bonus of 50% {
* @requires 3 < yearsInService <= 5;
* @ensures \result = 50;
* }
*
* @subcontract: more than five years yields a bonus of 75% {
* @requires 5 < yearsInService <= 8;
* @ensures \result = 75;
* }
*
* @subcontract: more than eight years yields a bonus of 100% {
* @requires 8 < yearsInService;
* @ensures \result = 100;
* }
*/
public static int getAnnualBonusPercentage(int yearsInService);

Listing 3.4: JML-specifications for getAnnualBonusPercentage

/**
* @desc A hardware store sells hammers (5 euros) and screwdrivers (10 euros).
* This method can calculate the price a customer needs to pay when buying
* these products.
*
* @subcontract: invalid input negative totalDue {
* @requires totalDue < 0.0;
* @signals (IllegalArgumentException) totalDue < 0.0;
* }
*
* @subcontract: invalid input negative amount of screwdrivers {
* @requires amountOfScrewdrivers < 0;
* @signals (IllegalArgumentException) amountOfScrewdrivers < 0;
* }
*
* @subcontract: If the total is less than 200 euros, no discount {
* @requires 0.0 < totalDue <= 200.0;
* @ensures \result = totalDue;
* }
*
* @subcontract: If the total is more than 200 euros and buys no more than 30
* screwdrivers, then the client obtains a discount of 5% over the total {
* @requires 200.0 < totalDue <= 1000.0 && 0 <= amountOfScrewdrivers <=30;
* @ensures \result = totalDue * 0.95;

13

* }
*
* @subcontract: If the total is more than 200 euros and buys more than 30
* screwdrivers, then the client obtains a discount of 15% over the total {
* @requires 200.0 < totalDue <= 1000.0 && 30 < amountOfScrewdrivers;
* @ensures \result = totalDue * 0.85;
* }
*
* @subcontract: If the total is more than 1000 euros and buys no more than
* 30 screwdrivers, then the client obtains a discount of 20% over the
* total {
* @requires 1000.0 < totalDue && 0 <= amountOfScrewdrivers <=30;
* @ensures \result = totalDue * 0.80;
* }
*
* @subcontract: If the total is more than 1000 euros and buys more than 30
* screwdrivers, then the client obtains a discount of 30% over the total {
* @requires 1000.0 < totalDue && 30 < amountOfScrewdrivers;
* @ensures \result = totalDue * 0.70;
* }
*
*/
public static double getDiscountedPrice(double totalDue, int

amountOfScrewdrivers);

Listing 3.5: JML-specifications for getDiscountedPrice

public class getAnnualBonusPercentage {
public static void main(String[] args) throws IllegalArgumentException {

int input = Integer.valueOf(args[0]);
if(input <0) {

throw new IllegalArgumentException("yearsInService must be
positive");

} else if (input < 3) { //bug, moet <= zijn
System.out.println("0");
return;

} else if (input < 5) { //bug, moet <= zijn
System.out.println("50");
return;

} else if (input < 8) { //bug, moet <= zijn
System.out.println("75");
return;

} else {
System.out.println("100");

}
}

}

Listing 3.6: getAnnualBonusPercentage method used for black-box testing

14

public class getDiscountedPrice {
public static void main(String[] args) throws Exception {

if(args.length==0) {
return;

}

double totalDue = Double.valueOf(args[0]);
int amountOfScrewdrivers = Integer.valueOf(args[1]);

if(totalDue < 0.0) {
throw new IllegalArgumentException("totalDue must be positive");

}

if(amountOfScrewdrivers <= 0) {
throw new IllegalArgumentException("amountOfScrewdrivers must be

positive");
}

if(totalDue <=200.0 && amountOfScrewdrivers > 30) { //bug
System.out.println(totalDue * 0.9);
return;

}

if(totalDue <=200.0) {
System.out.println(totalDue);
return;

}

if(totalDue > 200 && totalDue <=1000.0 && amountOfScrewdrivers <= 30)
{
System.out.println(totalDue * 0.95);
return;

}

if(totalDue > 200 && totalDue <=1000.0 && amountOfScrewdrivers > 30) {
System.out.println(totalDue * 0.85);
return;

}

if(totalDue > 1000 && amountOfScrewdrivers < 30) { //bug
System.out.println(totalDue * 0.80);
return;

}

if(totalDue > 1000 && amountOfScrewdrivers >= 30) { //bug
System.out.println(totalDue * 0.75);
return;

}

15

System.out.println(totalDue);
}

}

Listing 3.7: getDiscountedPrice method used for black-box testing

For lesson two, a week after, we will dive a bit deeper in the theoretical aspects of black-
and white-box testing, the test-first approach and we concentrate on the JUnit framework
and automating tests. After the basics in JUnit testing, we will learn the students to apply
the steps of the procedural guide to transform the specifications to a set of unittests. This
applying of the procedural guide is based on a case-method getWordRating with the specs
show in Listing 3.8. We will write a complete test-suite together with the students, using
a test-first design approach. The first subcontract is given as demonstration. For the next
subcontracts students are given a little more freedom until they can independently convert
the last subcontract into a set of unit tests.

/**
* @desc returns a dutch word-rated grade based on a numeric grade.
*
* @subcontract out of range grade {
* @requires grade < 1 || grade > 10;
* @signals (IllegalArgumentException) grade < 1 || grade > 10; }
*
* @subcontract inadequate {
* @requires 1 <= grade < 5,5;
* @ensures \result = "onvoldoende"; }
*
* @subcontract adequate {
* @requires 5,5 <= grade < 7;
* @ensures \result = "voldoende"; }
*
* @subcontract ample {
* @requires 7 <= grade < 8;
* @ensures \result = "ruim voldoende"; }
*
* @subcontract good {
* @requires 8 <= grade < 9;
* @ensures \result = "goed"; }
*
* @subcontract excellent {
* @requires 9 <= grade <= 10;
* @ensures \result = "uitmuntend"; }
*/

public static String getWordRating(double grade);

Listing 3.8: JML-specifications for getWordRating

At the end of the second lesson the ’Milestone 6’ assignment will be explained, an ex-
planation of the methods to be implemented and an explanation of what is expected of
the students in the ’thinking-aloud’ assignment. Because this is the last lesson before the

16

Christmas holidays, we give students three weeks to complete the ’Milestone 6’ assignment.
The instructions of the ’Milestone 6’ assignement are also provided in detail as pdf docu-
ment (see Appendix C). Students are motivated to start this assignment immediately after
the lecture, but we expect that many students will drop out and enter holiday mode as this
is the last day of college this year.

RQ3: What difference do we observe in coding behavior between students who use a
test-first approach based on external specifications together with the procedural guid-
ance, and students who do not use testing but have access to the specifications.

We want to know if a test-first approach will improve code correctness beyond sim-
ply using the semi-formal external specifications directly for the implementation. This
research question focuses on the behaviour of students during the ’Milestone 6’ assign-
ment. In this research question we do not look into the technical analysis of the com-
pleteness of the test-set and correctness of the implementation, we will do that in the next
research question. We hypothesize that students will make test-suites for the implementa-
tions where is test-set is optional if they understand the benefits and they make the tests
with ease. We hope to find signs that students themselves steer towards a test-first ap-
proach.

Method: For the mandatory group-assignment ’CodeCademy’ for the programming 2
course, student groups of four students were composed. We will motivate students to re-
ceive an extra bonus of 1 point to participate in the ’Milestone 6’ assignment, which is a par-
tial product of the larger group assignment. To participate in the ’Milestone 6’ assignment,
students must work in pairs, so there are two pairs for each ’CodeCademy’ group. For the
’Milestone 6’ assignment four methods are prescribed complete with specifications. The
two pairs agree among themselves for which of the two methods they each will develop
a mandatory test-set so that the two pairs deliver a complete test set for all four meth-
ods. These four test sets are required in the final group assignment which is mandatory to
pass the course. In addition to the two mandatory test sets per couple, each couple makes
the four implementations. Two implementations are made using a test-first approach of
the two developed testsets and for the two other implementations students are allowed to
make implementations according to the specifications at their own discretion. Making ad-
ditional test-sets is therefore allowed and we can deduce from this whether students are
willing to test these two implementations with test sets as well. During the assignment all
coding and verbal communication is recorded and handed in as part of the ’Milestone 6’
assignment. We will analyze their way of working and look if we can observe some changes
in behavior and quality awareness. We may decide not to view all recordings if it appears
that we have sufficient observations to describe the behavior and to provide a substanti-
ated answer to this research question.

RQ4: What improvement do we see in the code correctness when using a test-first ap-
proach together with explicit informal specifications and the procedural guide. Despite
the fact that many studies already show that testing can certainly improve code-quality, we
want to investigate whether this is still the case when explicit specifications are given in
JML. It could well be that the specifications are so explicit that the specifications already
ensure an error-free implementation. As a result, it may well be that making tests in ad-

17

vance is a waste of time because no increase in correctness is measurable. In addition to
the implementation code correctness, we also want to measure the completeness of the
test-suites. Historically, we see that students quickly slide into happy path testing. We ex-
pect that due to the explicit partitioning of the preconditions and the procedural guide,
students will certainly also test the exceptions in addition to the happy-paths.

Method: Students’ submissions of the ’Milestone 6’ assignment, with and without test-
suites can be checked on correctness on a teacher test set that is fully reviewed. It is im-
portant to know whether a test-first approach in concern to correctness is of added value
in addition to only providing explicit specifications so we can accept our hypothesis. In
addition to analyzing the correctness of the implementation, we also want to assess the
correctness and completeness of the created test sets. To do this, we will apply two meth-
ods:

• To check the correctness of the test sets, we will test each student submitted test set
against the correct teacher-implementation.

• In order to view the completeness of the test sets, we will modify the correct teacher-
implementations that lend themselves to this by means of mutation testing. Any mu-
tation of the teacher implementation must lead to a failure of at least one test. If this
does not happen, the test set is not complete.

RQ5: How do students feel helped by using a test-first approach together with the
procedural guidance. It is important for the willingness to test that students find the tests
useful. We want to know what helps students the most and if they are convinced that fol-
lowing a test-first approach with the procedural guide of converting external specifications
leads to better external quality of code.

Method: After analysing the ’thinking-aloud’ assignment we will define a list of subjects
and striking things that we noticed that will be used for our semi-structured interview. Also
we want to focus on how the procedural guide and external specifications in JML format has
helped the students. We will conduct these interviews after a few months when students are
working on a free project so students can reflect on their testing skills in later assignments
and projects. This gives us the opportunity to immediately monitor how students deal with
tests a while later and to analyse how much knowledge about testing has remained during
a number of months.

18

4
RESULTS

In order to answer the different research questions, we analyzed and combined informa-
tion obtained from different parts of the research.

• To create test cases, we need input variables and intended results or intended excep-
tions for each partition. We studied the JML standard and looked at how to capture
this information as clearly as possible. JML already provides parameters for capturing
the necessary information, however, capturing the multiple partitions is less clearly
defined in the JML-standard than we would like. The QPED research group has found
an alternative notation using subcontracts that distinguishes the different partitions
much more clearly than the @also keyword in JML. The alternative notation used is
the @subcontact keyword with a descriptive text and the pre- and post-conditions
(or signals) between braces behind this, see the example in Listing 4.1.

/**
* @subcontract <description> {
* @requires <precondition>
* @ensures <postcondition> }
**/

Listing 4.1: The use of @subcontract in JML-specifications

• We designed lessons inspired by the four component instructional design of van Mer-
riënboer and Kirschner [2007]. We conducted these lessons and looked closely at
how students picked up the lesson material during the practical. Specific attention
was paid to the number of questions during class and after that, what these questions
were related to and what the students’ working methods were. A few months later we
asked students questions about the lessons in the interview and the questionnaire.

• We have analyzed the ’Milestone 6’ assignment. About 50% of the students partic-
ipated (52 out of 102 students) in this assignment. This ’Milestone 6’ assignment
consists of three products for each student-pair: The four implementations based
on the specifications, at least two test suites based on the specifications and a video
recording of the ’thinking-aloud’ session while making the test-suites and implemen-
tations. For the ’thinking-aloud’ analysis, we only analysed 11 out of 25 recordings in

19

depth. After these 11 recordings we concluded that no new information was discov-
ered. The other 14 recordings we scanned quickly but we could not discover any
surprising facts.

• Five months after the lectures about code-quality and testing we held interviews to
analyse the testing-behavior at that point. Because only six students were willing
to participate in the interviews, a questionnaire was drawn up based on the most
striking facts from these interviews. By raffling a prize among the entries, twenty
students took part in the survey so we can create a more solid basis on which to base
conclusions.

4.1. PROCEDURAL GUIDE
RQ1: What does a procedural guide to transfer external specifications to black-box tests
look like and are there minimum requirements for the external specifications.

We want to design a procedural guide as concise as possible, there should be no reading
barrier to give support to students in the process of converting the specifications into test
suites. If a student no longer knows how to define tests, he should be able to understand
this again with as little text as possible. Meanwhile, we also want it to be helpful in under-
standing the technical terms we use. We will design the guide with these aspects in mind
and provide the step-by-step instructions necessary to convert JML specifications to test-
suites along with a glossary of technical terms and keywords that are used while designing
and writing tests.

To design a test-suite, we need to know the different input-domain partitions. Each
value specified in the input-domain of a single partition will have a similar effect on the
post-condition will be an equivalence class or subcontract. These different partitions will
form the collection of subcontracts for the complete specification of the software unit1.
For each subcontract the range of valid input values is called the pre-condition. If there is a
valid post-condition for this given pre-condition we can define an oracle for this and com-
pare it to the return value of the implementation under test. If the input-domain of the sub-
contract leads to an invalid post-condition there will be an exception specified. So the only
required parameters to base the test-suites on are the pre-condition and post-condition, or
a pre-condition and exception for each subcontract. Special attention must be paid to the
fringe cases for which this subcontract is just applicable. These are the so-called bound-
aries of the equivalence classes and must certainly be tested for correct functioning. For
clarification of the subcontract there is also a less formal description added. This descrip-
tion only serves as a label for the subcontract and no pre- or post-condition needs to be
derived from this.

The main phases of the procedural guide are: Prepare the testsuite, design the tests,
code the tests, code the implementation and test the implementation. To guide the stu-
dents through these phases we identified all the small steps to take to complete each phase
by making the teacher reference test-sets. The result of the procedural guide can be seen in

1For simplicity reasons we will assume there is a one-to-one relationship between subcontracts and parti-
tions. When defining subcontracts in the specifications we cannot always foresee all the different partitions
in a more complex software-unit. This could result in an iterative process where subcontracts are later ex-
panded when needed. For this research and the assignments for the students we can assume this one-to-one
relationship.

20

Appendix A.

4.2. INSTRUCTION
RQ2: How do we teach students to apply the procedural guide to create a complete test-
first-suite from external specifications.

We have provided two theory lectures of two hours each followed by a supervised prac-
tical of three hours.

In lesson one, we made students aware of the concepts of quality and specifically cor-
rectness. The exercise to test the software unit calculateAge() without specification turned
out well. There was a clear divide among the students. Students who thought the imple-
mentation was good and students who saw that the implementation was wrong. This pro-
voked a good discussion after which, after demonstrating which data leads to wrong out-
put, it soon became clear what went wrong in the implementation. Students were again
surprised when we told them that the output should actually be the age in full months in
stead of years. It quickly became clear that without specifications we cannot prove whether
a software unit is correct.

We showed students that specifications in descriptive text are often ambiguous. An ex-
ample is "choose a number between one and ten". Are the numbers one and ten included?
We would say not by the word ’between’, but a certain context might make us decide to in-
clude one and ten as a valid choice. Of course, we do not want to develop software based
on assumptions, we want a clear and unambiguous specification so we showed students a
more formal notation in JML.

We explained students how the specifications according to the JML standard can be
properly and clearly read. Concepts such as pre-, post-condition and exception and their
JML equivalents @requires, @ensures and @signals are explained and demonstrated. We
have explicitly made it clear to students that for now the intention is not to be able to design
JML-specifications at this point, but only to be able to read and understand them.

The next step in the lesson was to clarify equivalent classes. For the rest of the lesson,
the example daysUntilNextBirthday() was used, the specifications of this unit are found in
Listing 4.2. But those specifications are not immediately shown to the students.

/**
* @desc Calculates the amount of days until the next birthday of
* dateOfBirth.
*
* @subcontract: not born yet {
* @requires dateOfBirth > LocalDate.now();
* @signals (IllegalArgumentException) dateOfBirth > LocalDate.now();
* }
*
* @subcontract: null dateOfBirth {
* @requires dateOfBirth == null;
* @signals (NullPointerException) dateOfBirth == null;
* }
*
* @subcontract: birthday is yet to come this year {
* @requires LocalDate.now().getMonthValue() <

21

* dateOfBirth.getMonthValue() ||
* LocalDate.now().getMonthValue() == dateOfBirth.getMonthValue() &&
* LocalDate.now().getDayOfMonth() < dateOfBirth.getDayOfMonth();
* @ensures \result = #days until (not including) next birthday &&
* 1 <= \result < 365;
* }
*
* @subcontract: today is my birthday {
* @requires dateOfBirth.getMonthValue() ==
* LocalDate.now().getMonthValue() &&
* dateOfBirth.getDayOfMonth() == LocalDate.now().getDayOfMonth();
* @ensures \result = 365;
* }
*
* @subcontract: birthday has already passed this year {
* @requires dateOfBirth.getMonthValue() >
* LocalDate.now().getMonthValue() ||
* dateOfBirth.getMonthValue() == LocalDate.now().getMonthValue() &&
* dateOfBirth.getDayOfMonth() > LocalDate.now().getDayOfMonth();
* @ensures \result = #days until (not including) next birthday &&
* 1 <= \result < 365;
* }
*/
public static int daysUntilNextBirthday(LocalDate dateOfBirth) throws

Exception;

Listing 4.2: JML-specifications for daysUntilNextBirthday()

Students were asked to distinguish different input values that lead to a different code-
path to calculate the number of days until the next birthday. We try to give students a sense
of what the different partitions or subcontracts are used for. This proves to be extremely
difficult for students. After giving them a few minutes to think, we gave them a few sugges-
tions such as: What if the date of birth is an invalid date, for example January 32; What if
the date of birth is in the future, and is that actually possible? Should a choice like this be
stated in the specifications?

Students are still unable to come up with partitions. The suggestion: ’What if the date
of birth is an invalid date’, started a nice discussion. A considerable group of students com-
mented that an invalid date cannot exist in a date-type variable. For us, this showed that
students are following the lesson well and are seriously considering our options.

After a while, we decided to continue with hints and follow-up conversations. Our next
hint was, how many days will it be until your next birthday if your birthday is today. We sug-
gested the value 0 which was blindly accepted by the students. After this, we emphasized
’until your next birthday’. Some students responded promptly with 365 days. The follow
up question by us was, but what if a leap year is involved? It quickly becomes apparent to
students that distinguishing different partitions is a difficult task. We tell them that we will
indicate the different partitions in the beginning, but that they will eventually have to take
a good look at them themselves. At this stage we introduced the concept subcontract and
we showed how to capture such a specific situation in a subcontract. Support in this way
has also been suggested by the four component model of van Merriënboer and Kirschner

22

[2007]. Start with a demonstration, then take small steps, each more challenging in each
iteration.

We then proceed to deal with the next subcontract: ’The birthday has yet to come this
year’. We introduce the concept of a testing-oracle and teach students to choose a value
from the input domain that produces a result that is always the same. Students all come
with a fixed date, often if their own birthday is still happening this year, with their own date
of birth. They do not yet see that such a test only works temporarily and that the expected
outcome is different at another time. We will go into this in more detail.

As an example, it is mentioned that a fixed birthday on January 2nd is a bad choice.
Tomorrow the result of the number of days until my next birthday has changed again. So
the oracle leads to a non constant expected test result. By using such variable test results,
we would need the implementation to calculate the intended test result, which of course
renders the test useless. Students find it difficult to find an input variable that is relative to
today. After the suggestion ’three days after today’ it suddenly became clear to the students
what is meant by a date relative to today.

For all subcontracts we defined test cases together with the students and recorded them
in a given template. The testcase refers to the subcontract that is being tested, the pre-
condition is a valid value in the input domain, oracle is a constant test output reasoned with
the test oracle. The post-condition or exception is the actual output of the implementation
under test. If the output of the oracle and the post-condition are equal, the test is passed.
The used template is shown in figure 4.1.

Figure 4.1: Test template

After this example with complete analysis of pre- and post-condition and designing the
testcases with also the edge-cases covered we showed students a procedure on how to setup
test-cases for a subcontract. This procedure is a small subset of the complete procedural
guide and only covers the design of the testcases for each subcontract and to validate the
implementation on correct behaviour. These steps are taught to students as follows:

1. Make at least 1 test case for each @subcontract (think of edge cases, 1 test is seldom
enough).

2. For each test case, come up with a precondition that satisfies @ensure and leads the
oracle that leads to a constant output value.

23

3. Run the method under test with the precondition from step 2.

4. Verify that the post-condition matches the output from the oracle from step 2.

5. If step 4 is positive, the test is passed.

The theory lesson is concluded with a discussion of this small part of the procedural
guide that deals with converting specifications into test cases.

The theory lesson is followed by a three-hour practical, supervised by teachers. There
are three assignments for the students to complete. The first assignment is only testing of
the daysUntilNextBirthday(). The test cases were already designed in the previous theory
lesson. We monitored the students during this supervised practical and found that the
actual testing based on the test-design was executed with ease.

The next 2 assignments had to be done from reading the specifications, design of the
tests until executing the tests. For each assignment a compiled unit of software, with in-
tentional bugs, was delivered. According to the theory of van Merriënboer and Kirschner
[2007], we give less hints with every assignment, so that the difficulty level increases in a
natural way. We did this by providing incomplete test-design templates where some prop-
erties are already in place.

Only a few questions were asked during the practical. We saw that the tests were neatly
designed on paper and that the procedure was followed correctly. This gave us confidence
that the lesson had arrived well. We asked a few students what they thought of the lecture
and they said it was definitely an eye opener.

A week later we continued with lesson two. The main topic for this lesson is automated
testing using JUnit. The lesson begins with the purpose of automated testing and the differ-
ence between black and white box testing. JUnit is briefly discussed, but we immediately
move on to a practical situation. We introduce the procedural guide, as shown in Appendix
A, and use it to code a test suite with JUnit for the specified method in Listing 4.3.

/**
* @desc returns a dutch word-rated grade based on a numeric grade.
*
* @subcontract out of range grade {
* @requires grade < 1 || grade > 10;
* @signals (IllegalArgumentException) grade < 1 || grade > 10; }
*
* @subcontract inadequate {
* @requires 1 <= grade < 5,5;
* @ensures \result = "onvoldoende"; }
*
* @subcontract adequate {
* @requires 5,5 <= grade < 7;
* @ensures \result = "voldoende"; }
*
* @subcontract ample {
* @requires 7 <= grade < 8;
* @ensures \result = "ruim voldoende"; }
*
* @subcontract good {

24

* @requires 8 <= grade < 9;
* @ensures \result = "goed"; }
*
* @subcontract excellent {
* @requires 9 <= grade <= 10;
* @ensures \result = "uitmuntend"; }
*/

public static String getWordRating(double grade);

Listing 4.3: JML-specifications for getWordRating()

Step by step, we create a complete test suite based on this procedure. We constantly ask
for input from the students and encourage discussions about how we are going to build the
test suite. A striking detail was that in the boundary tests students want to take values that
fall outside the input-domain of the subcontract. This has come up several times in the
lesson and it also appears later in the elaborations and the ’thinking aloud’ assignment of
Milestone 6 that students do not realize that input values outside the pre-condition of the
subcontract actually belong in another partition.

Another striking detail is that students are not yet fully aware of Exceptions. Some think
you should throw an exception by returning it as returnvalue. Some are convinced that you
really should throw an exception with catch. This lack of knowledge is probably due to the
fact that this topic was only discussed in class two weeks ago and that a large part of the
students is behind with the practice assignments. We also see this lack of knowledge in the
elaborations and ’thinking aloud’ sessions of Milestone 6, which were handed in 3 weeks
later.

After designing and coding this test suite together with the students, following exactly
the procedural guide, we explained the ’Milestone 6’ assignment and encouraged students
to start this assignment during the supervised practicum after class. Unfortunately, the
class was scheduled on the Friday before the Christmas holidays, which meant that more
than 50% of the students were absent during the practical. We have seen from the students
who were present that the teaching material has arrived well. One problem students find
difficult to solve is including the JUnit libraries in their project. Even though they learned
how to include JavaFX two weeks earlier, it turns out that applying this knowledge to these
other libraries is difficult.

In the last interviews and questionnaire, we asked students what they thought about the
lessons and whether they experienced the lessons as difficult. For difficulty students could
choose a value from one to five, where one stands for ’too easy’ and a five stands for ’too
difficult’. Based on 20 results, the mean and median were three with a standard deviation
of 0.73. Based on this, we conclude that the difficulty level suits the intended target group.

With regard to the qualitative question of whether students have become more aware of
code quality after the training, the majority of students only think about internal code qual-
ity and maintainability of code. We get a lot of references to the Software-design and Archi-
tecture lecture where we talked about maintainability of code. Concepts such as maintain-
ability, code duplication, structure, single responsibility are fully discussed. Not a single
student comes up with a concrete reference to the correctness of the written implementa-
tion code. A single student has remembered above all not to make assumptions. Another
student said that through the testing lessons he became aware that writing correct code
also means that you should cover invalid inputs and define exceptions for such cases and

25

also test those exceptions.
We think that the topic of code quality has been less lingering in the testing lesson be-

cause it has been overshadowed by the different concepts of code quality in the lecture
Software design and architecture. It might be a good idea to revisit the concept of cor-
rectness in this software design and architecture lessens. It might also have been better to
explicitly use the term ’correctness’ in the phrasing of the questionnaire instead of code
quality.

In the questionnaire we asked students for tips to improve the lessons about code-
quality and testing. Overal students found the lessons useful, a single student mentioned
that the large amount of specification-comments could scare some of the students. Stu-
dents say the testing-subject is seen as boring, but because of the many examples and ex-
cersises in class it was ’flavored’ well. The bonus-point in grading the group assignment
was a good motivation to work on the ’Milestone 6’ assignment. Testing feels too optional
in later courses where lack of testing does not lead to failing the course or project. Some
students suggest therefore to grade testing in later courses, projects and assignments to
force testing.

4.3. STUDENTS BEHAVIOR
RQ3: What difference do we observe in coding behavior between students who use a test-
first approach based on external specifications together with the procedural guidance,
and students who do not use testing but have access to the specifications.

Analyzing the Milestone 6 assignment, it was noted that five of the twenty-five student
couples designed test suites for all four implementations while only two were required and
the other optional. The video analysis of the ’thinking aloud’ session of one of these student
couples, who already routinely approached testing, also includes the following quote "Shall
we define black-box tests for this assignment? We have to test it anyway!", which has made it
the subtitle of this graduation research. This statement clearly indicates that if the skills are
present to make test-suites, creating a test-suite takes no extra time beyond trying manually
to see if the implementation works. But it does continue to work as a guarantee for the
correctness of the implementation.

We see in all student groups that the automated conversion of specifications to test
suites is going reasonably well. From the preconditions of the specifications, the test val-
ues are chosen and the oracle is derived from the post-condition. The procedural guide
is broadly followed. We can draw this conclusion because some aspects such as the AAA
pattern (Arrange-Act-Assert) come out particularly well. But there are no indications that
these students actually have the guide with them all the time. In the interviews, students
indicate that the procedural guide is useful when learning the steps, but after performing
this a few times during exercises, it goes automatically because this are fairly easy steps to
master.

One aspect is not going well. Students quickly fall into making one test case per subcon-
tract and forget to test the boundaries while they do talk about boundaries in the ’thinking-
aloud’ session. With other students we see that boundaries are taken outside the scope
of the subcontract while the oracle is taken from within the scope of the subcontract. Af-
ter making the implementation, these students find out that this test does not pass. After
students reason together what is going wrong in the implementation, they find out after
a while, without clear motivation, that they should just change the assureTrue() to assure-

26

False() in the test. Students now see that the test passes and they quickly move on to the
next assignment.

With a single student couple we saw that the procedural guide was quickly consulted
because there was a lack of clarity in the naming of the test method. Unfortunately, a while
later this student couple changed the method names that matched the guide to different
names because they liked that better. With the other couples we found no indication that
the procedural guide was followed explicitly step by step, although we could see that the
steps taken largely comply with the guide. Interviews with students also show that after
the exercises, a large proportion of the students no longer feel the need to have the guide
constantly next to them.

When creating the implementations that do not need test-suites, parts of the specifica-
tions are still copied and used almost one-to-one as implementation code. Students find
the JML-specifications very useful for this, even if they do not need tests. A single student is
convinced that the implementation based on the JML-specifications does not really need
testing, because it fully complies with the specifications due to copying the conditions from
the JML-specifications.

It is striking to see that the fumbling in the ’thinking-aloud’ sessions has nothing to do
with testing, but with the general programming skills that have not yet been developed to
the intended level.

4.4. EXTERNAL CODE QUALITY
RQ4: What improvement do we see in the code correctness when using a test-first ap-
proach together with explicit informal specifications and the procedural guide.

In addition to the behavior of students, it is of course important to know whether a
test-first approach still contributes to code correctness. The articles about testing in an ed-
ucational setting are not exclusively positive as already concluded by Desai et al. [2008b],
Edwards and Shams [2014], Pancur et al. [2003] and many others. We expect that by sup-
plying explicit semi-formal JML specifications, the test suites made will score well on the
quality aspect of completeness. We expect that the test suites created will not be limited
to happy-path testing only, because the combination of the procedural guide and the JML-
specifications also guides students through the non-happy-paths. We hypothesized that if
the specifications in this study are given so explicitly that the implementation can be im-
mediately derived from them, testing will add little to the quality aspect of code correctness
of the implementation. The results show us that we are wrong about this, as we discover
later in 4.4.5 after we cover the analysis of the submitted assignments in the next sections.

For the four methods that had to be coded for the ’Milestone 6’ assignment, we will
analyze the results method-by-method.

4.4.1. NumericRangeTools.isValidPercentage()
This method excels in its simplicity. The specifications of this method can be found in
Listing 4.4. This assignment was created with the focus on being able to easily generate a
complete test set. Due to the simplicity, it is also obvious that the implementation can be
easily implemented by a one-liner. We therefore expect high-quality submissions from the
students.

public class NumericRangeTools {

27

/**
* @desc Validates if the input is within range of 0-100%
*
* @subcontract value within valid range {
* @requires 0 <= percentage <= 100;
* @ensures \result = true;
* }
*
* @subcontract value out of range low {
* @requires percentage < 0;
* @ensures \result = false;
* }
*
* @subcontract value out of range high {
* @requires percentage > 100;
* @ensures \result = false;
* }
*
*/

public static boolean isValidPercentage(int percentage);
}

Listing 4.4: JML-specifications for isValidPercentage()

For this assignment, there are fourteen student couples (56%) who submitted the im-
plementation with a test suite. The remaining eleven student couples (44%) only made the
implementation of this method.

To assess correctness on the implementation, we tested the submitted implementation
against a validated teacher test set. Of the fourteen student couples who also made a test
set, twelve student couples turned out to have made a completely correct implementation.
This is 85.7% of the group who wrote a test set for this method. Of the eleven student
couples that chose not to make a test set, eight student couples turned out to have made
a completely correct implementation. This is 72.2% of the non-testing group. In order
not to let students with really bad programming skills obscure the results, we also take the
median of the correctness. Both groups score here the expected 100% correctness for the
implementation.

After the implementations, we also reviewed the test sets. We assess the test sets on two
quality aspects, namely correctness and completeness.

To determine the correctness of the test sets, we test against a validated teacher im-
plementation, we also test against an inverted teacher implementation to detect tests that
always pass. Of the fourteen test sets made, ten (71.4%) sets test correctly. Surprisingly,
there are two student couples with good implementation but failing tests. When we look
at the recorded ’Thinking aloud’ session, we see that these groups do pre-create test sets,
they do make the implementation, but forget to test the implementation against their test
set. We conclude from this behavior that testing with these students is not seen as a tool
to ensure the correctness of the implementation, but merely as a task from school to be
completed.

28

To assess the completeness of the test sets, we use mutation testing on the teacher im-
plementation. Any mutation made to the teacher implementation must fail at least one
test from the submitted test set. We see that eight of the fourteen test sets (57.1%) are com-
plete. On average we see that 81.4% of the mutations are detected, the median on mutation
detection for this method is 100%.

4.4.2. DateTools.validateDate()
To increase the difficulty, we have put together a method that should be able to detect a
valid date from the combination of day, month and year. The specifications for this method
are in Listing 4.5. What makes this assignment more difficult is the amount of edge cases
that can be found in the different subcontracts. We expect that there are only a few stu-
dents who make so many tests that the edge cases are covered. We are more optimistic
about implementation, the JML specifications are so explicit that the implementation can
be derived from these specifications one-to-one.

public class DateTools {
/**
* @desc Validates a given date in the form of day, month and year
* is valid.
*
* @subcontract 31 days in month {
* @requires (month == 1 || month == 3 || month == 5 || month == 7 ||
* month == 8 || month == 10 || month == 12) && 1 <= day <= 31;
* @ensures \result = true;
* }
*
* @subcontract 30 days in month {
* @requires (month == 4 || month == 6 || month == 9 || month == 11) &&
* 1 <= day <= 30;
* @ensures \result = true;
* }
*
* @subcontract 29 days in month {
* @requires month == 2 && 1 <= day <= 29 &&
* (year % 4 == 0 && (year % 100 != 0 || year % 400 == 0));
* @ensures \result = true;
* }
*
* @subcontract 28 days in month {
* @requires month == 2 && 1 <= day <= 28 &&
* (year % 4 != 0 || (year % 100 == 0 && year % 400 != 0));
* @ensures \result = true;
* }
*
* @subcontract all other cases {
* @requires no other accepting precondition;
* @ensures \result = false;
* }
*

29

*/
public static boolean validateDate(int day, int month, int year);

}

Listing 4.5: JML-specifications for validateDate()

For this assignment, there are sixteen student couples (64%) who submitted the im-
plementation with a test suite. The remaining nine student couples (36%) only made the
implementation of this method.

To assess correctness on the implementation, we again tested the submitted implemen-
tation against a validated teacher test set. Of the sixteen student couples who also made a
test set, fourteen student couples turned out to have made a completely correct implemen-
tation. This is 56.3% of the group who wrote a test set for this method. Of the nine student
couples that chose not to make a test set, five student couples turned out to have made a
completely correct implementation. This is 55.6% of the non-testing group.

With the teacher test set we detected 8.2% failing test cases on the implementations that
were supplied with the test set. On the implementations that were submitted without a test
set, we detect 13.6% failing tests. So here we see a difference in the correctness of the im-
plementations made. Now it is true that the implementation using the JML-specifications
was not that difficult. The majority of the students provided a completely correct imple-
mentation. The determined median on failing test cases across all elaborations is 0%.

After the implementations, we again reviewed the test sets. We assess the test sets on
two quality aspects, namely correctness and completeness again.

To determine the correctness of the test sets, we test against a validated teacher im-
plementation, we also test against an inverted teacher implementation to detect tests that
always pass. Of the sixteen test sets made, thirteen (81.3%) sets test correctly. Again there is
a student couple with good implementation but failing tests on their own implementation.
When we look at the recorded ’Thinking aloud’ session, we see that this couple thinks that
they should also write tests that intentionally fail. This could not happen if the procedural
guide had been followed step-by-step. We can certainly conclude for this student couple
that they certainly do not use the step-by-step plan for this assignment.

To assess the completeness of the test sets, we use mutation testing on the teacher im-
plementation again. This method has a lot of mutations therefor we expect a low percent-
age on completeness of the test set. After analysis of the mutation test, we can conclude
that no student couple has supplied a complete test set in which all mutations are detected.
The average test completeness over all submitted tests is 72.1%, the median is 76%. We
think this is not a bad score after all.

4.4.3. MailTools.validateMailAddress()
The next assignment is a validation assignment in which a string must be validated on a
correct format. Students have not yet been introduced to regular expressions, so the JML
specifications are based on the ’String.split()’ method. The specifications can be found in
Listing 4.6. Email addresses are only valid if they consist of one single domain name with
a top-level domain. Email addresses such as ’mailbox@subdomain.domain.tld’ are invalid
according to these specifications. We are curious if students make assumptions and still
accept additional subdomains in the implementation of this validation method.

30

public class MailTools {
/**
* @desc Validates if mailAddress is valid. It should be in the form of:
* <at least 1 character>@<at least 1 character>.<at least
* 1 character>
*
* @subcontract no mailbox part {
* @requires !mailAddress.contains("@") ||
* mailAddress.split("@")[0].length < 1;
* @ensures \result = false;
* }
*
* @subcontract subdomain-tld delimiter {
* @requires !mailAddress.contains("@") ||
* mailAddress.split("@")[1].split(".").length > 2;
* @ensures \result = false;
* }
*
* @subcontract no subdomain part {
* @requires !mailAddress.contains("@") ||
* mailAddress.split("@")[1].split(".")[0].length < 1;
* @ensures \result = false;
* }
*
* @subcontract no tld part {
* @requires !mailAddress.contains("@") ||
* mailAddress.split("@")[1].split(".")[1].length < 1;
* @ensures \result = false;
* }
*
* @subcontract valid email {
* @requires no other precondition
* @ensures \result = true;
* }
*
*/

public static boolean validateMailAddress(String mailAddress);
}

Listing 4.6: JML-specifications for validateMailAddress()

For this assignment, there are sixteen student couples (64%) who submitted the im-
plementation with a test suite. The remaining nine student couples (36%) only made the
implementation of this method.

To assess correctness on the implementation, we again tested the submitted implemen-
tation against a validated teacher test set. Striking fact is that only one student couple man-
aged to deliver a correct implementation. This couple also made a test set for this method.
Almost all students go wrong with the fact that in this method only a single domain name
with tld is valid. Even the tip in the description of the method ’<at least 1 character>@<at

31

least 1 character>.<at least 1 character>’ didn’t help them.

Upon closer inspection of the elaborations, it appears that many students have copied
’split(".")’ from the specifications into the implementations. However, the ’.’ in this split
method is not a literal string but a regular expression, meaning any character. If students
really want to split on the character ’.’ then they will have to escape this character with a
backslash like this: ’\.’.

The fact that ’.split()’ works with regular expressions in Java was unforeseen when draft-
ing the assignment. The meaning in the specifications is split on the character ’.’. This is
not a bad thing in itself, because we can now analyze what students do if the specification
contains something that cannot be transferred one-to-one in Java.

In the ’Thinking aloud’ sessions we see that many students do not see this unintended
effect, because they do not test correctly. The students who do notice the unintended effect
of the ’split()’ method struggle a lot before they find the solution on the internet.

If we look at the percentage of teacher tests that fail on implementations, we see that in
the group of students who also made test sets, 28% of the tests fail, with a median of 21.1%.
Of the group of students who did not write a test set for this method, on average 56% of the
teacher tests fail with a median of 68.4%.

Although the implementation caused problems for most students due to the unfore-
seen regular expression in the ’split()’ method, students could of course have made a good
test set. After an analysis of the test sets with the teacher implementation and a negation
of this implementation, we see that nine of the sixteen student couples submitted a correct
test set. A total of 95 tests were written by these students. Of these tests, six (6.3%) fail on
the validated teacher implementation.

4.4.4. PostalCode.formatPostalCode()
The ’formatPostalCode()’ method adds a different kind of complexity. Not only does this
method perform validation, but it must also properly format and return a given string. Due
to the additional complexity, we expect that students may write more test cases to ensure
the correctness of their implementation. The specification of this method can be found in
Listing 4.7

public class PostalCode {

/**
* @desc Formats the input postal code to a uniform output in the form
* nnnn<space>MM, where nnnn is numeric and > 999 and MM are 2
* capital letters.
* Spaces before and after the input string are trimmed.
*
* @subcontract null postalCode {
* @requires postalCode == null;
* @signals (NullPointerException) postalCode == null;
* }
*
* @subcontract valid postalCode {
* @requires Integer.valueOf(postalCode.trim().substring(0, 4)) > 999
* && Integer.valueOf(postalCode.trim().substring(0, 4)) <= 9999

32

* && postalCode.trim().substring(4).trim().length == 2
* && ’A’ <=
* postalCode.trim().substring(4).trim().toUpperCase().charAt(0)
* <= ’Z’
* && ’A’ <=
* postalCode.trim().substring(4).trim().toUpperCase().charAt(0)
* <= ’Z’;
* @ensures \result = postalCode.trim().substring(0, 4) + " " +
* postalCode.trim().substring(4).trim().toUpperCase()
* }
*
* @subcontract invalid postalCode {
* @requires no other valid precondition;
* @signals (IllegalArgumentException);
* }
*
*/

public static String formatPostalCode(String postalCode);
}

Listing 4.7: JML-specifications for formatPostalCode()

For this assignment, there are fifteen student couples (60%) who submitted the imple-
mentation with a test suite. The remaining ten student couples (40%) only made the im-
plementation of this method.

No single student couple has managed to implement this method correctly. Striking
about the elaboration of this method is the fact that lots of students have not yet mastered
the skills of throwing exceptions and testing these exceptions, even though this was already
discussed in class weeks ago. In the ’Thinking Aloud’ session, we see them struggle to get
the exceptions working.

We do see major differences between the elaborations of students who have written
tests in advance and students who have only made the implementation. Of the teacher
test set, which consists of 20 test cases, an average of 28% (median 10%) of the tests fail
in students who have written tests in advance, compared to 37% (median 25%) of the test
cases in student couples who have not written any tests for their implementation.

4.4.5. OVERALL RESULTS

If we look at the general picture of code correctness of the implementation, summarized
in Table 4.1, we can conclude that a test-first approach certainly contributes to improving
code correctness even when students without tests have the same JML-specifications at
hand.

If we combine data on all 4 assignments together for the 25 student couples, we see at
n=100 (25 couples x 4 assignments) an average of 17% failing teacher tests with students
who use test-first together with the procedural guide and with explicit JML-specifications.
Students who have the same JML-specifications but choose not to write tests score an av-
erage of 31% failing teacher tests.

If we look at the achieved completeness of the students’test sets, we see that for the
assignments validateDate() and isValidPercentage() on average 73% of the bugs are found

33

students using test-first students without testsets
method name average median average median
isValidPercentage() 4% 0% 17% 0%
validateDate() 8% 0% 14% 0%
validateMailAddress() 28% 21% 56% 68%
formatPostalCode() 28% 10% 37% 25%

Table 4.1: Tests failing percentage on implementations using a reference test-set

(42 mutations of the validated teacher implementations). Edwards and Shams [2014] found
in their research that students are on average only able to find 13.6% of the faults.

This remarkable difference can be found in the added combination of procedural guide
and the explicit JML-specifications. This combination ensures that students do not stray
into happy-path testing but procedurally leads them to test all input partitions.

4.5. STUDENTS’(UN)WILLINGNESS TO INVEST TIME FOR QUAL-
ITY

In the interview and the questionnaire we asked whether and where students used the pro-
cedural guide. Students could choose between the following answers:

a. Yes, during the lesson assignments and CodeCademy "Milestone 6" assignment.

b. Yes, only during the assignments in the lesson.

c. Yes, only during CodeCademy "Milestone 6" assignment.

d. Yes, a few times, after that the steps were completely clear and I didn’t need it any-
more.

e. No, i did not use the guide.

f. Procedural guide for testing? I have no idea what it is about.

The results are shown in Figure 4.2:

An interesting fact is that during the analysis of the ’thinking aloud’ recordings there
are no indications that the guide is physically present, but for the most part the steps are
followed correctly.

One student couple even designed the test cases in the provided template (Figure 4.1)
for coding the tests. Which was only used during the first practical, not to be hindered by
the JUnit framework complexity, to think about suitable test values.

The interviews also show that students find the process fairly easy and logical. After
practicing with the guide, there is no longer any need to keep the guide with you. One
student says they have set the guide aside as a cheat sheet in case he doesn’t remember. The
two students who no longer recognize the procedural guide also indicate that the difficulty
of the test lessons is ’high’ in a previous question. Maybe because of the difficulty or lack of
motivation they dropped out to take the lessons seriously.

34

Figure 4.2: Usage of the procedural guide

When asked whether the procedural guide was helpful or not, 16 of the 20 students in-
dicated that they found the guide useful, two students were neutral, and two students indi-
cated that they did not see any added value in the guide. Overall, students like the procedu-
ral guide because it provides an overview, it helps to better understand the transformation
from specification to code, it makes clear in which order you should approach the conver-
sion, it provides systematic support and so you do not forget anything. Students who do
not find the guide helpful say the process is simple enough and if they do not understand it,
they will look for an instructional video on the internet to get a demonstration. This creates
a fear among us as teachers. Who judges the quality of these youtube knowledge clips? We
will take this comment into account, perhaps that we can record a knowledge clip ourselves
and put it in an accessible place for students.

The interviews already showed that students do not recognize the term specifications,
whether or not supplemented with the term JML. They are still familiar with the term sub-
contracts and in an interview they immediately relate it to testing boundaries. From this
we conclude that knowledge about partitioning and boundary values is present, but that
the terms JML and specifications have been forgotten. For the questionnaire we included
therefore an example of a JML-specification.

In the questionnaire we asked students whether the JML-specifications helped with
making the assignment. They could choose from the following answers:

a. Yes, for both the coding of the tests and the implementations.

b. Yes, for coding the tests.

c. Yes, for coding the implementations.

d. No, it didn’t help me.

e. JML or (sub)contracts? I have no idea what it’s about, I must have missed that lesson.

The results are shown in Figure 4.3:

35

Figure 4.3: Helpfulness of the JML specifications

It was no surprise to see that the majority of students choose helpful in writing the tests
and the implementation. After all, we already saw in the analysis of the ’Thinking-aloud’
assignment that without exception the pre- and post-conditions from the JML were copied
and pasted into the tests and implementations.

As for the qualitative elucidation of this question, students answer that JML-specifications
help to provide clarity about how the implementation should work, it provides guidance in
determining the boundaries to be tested, it was even so clear that the specifications could
be mapped one-on-one in the tests and implementation. The students who did not find
JML-specifications helpful indicate that they find it a strange concept to ’code’ the JML-
specifications and then code exactly the same in the tests and after one time again in the
implementation. They indicate that they do not see the added value above an informal
comment in descriptive text prior to the method. Of course we could do something with
this, such as coming up with an assignment where the specifications cannot be copied
one-to-one to the tests or to the implementation. On the other hand, it is precisely our
intention to make the conversion of specifications into tests and implementations as ac-
cessible as possible for these novice programmers.

Furthermore, the questionnaire asked whether students would be willing to compose
JML-specifications themselves from a problem statement in a natural language. The stu-
dents could tick multiple statements and the statements were as follows:

a. Yes of course, it definitely improves the code quality because it makes me think more
about the problem.

b. Yes, I would like to do that if there is also a handy step-by-step plan for this.

c. Yes, but only if it is part of a graded review.

d. Yes, but not in such a strict JML way.

e. No, writing tests already gives enough specifications to code the method.

36

f. No, with the same effort I immediately code such a method.

g. No, it takes me too much time.

The results are getting a bit more surprising. We hypothesized that students who see
the benefit of explicitly composed JML specifications themselves will be willing to volun-
tarily compose them. The answer to this question shows that less than half, with or without
the help of a procedural guide, would be willing to do this. Six students answered that they
only do this if it is actually graded, eight students indicate that they would specify it, only in
a less formal way, eight answers indicate that they do not want to do it because it takes too
much time. Composing semi-formal specifications is therefore considered as cumbersome
and time-consuming. The results are shown in Figure 4.4:

Figure 4.4: Willingness to make JML specifications

The follow-up question, "I am willing to write automated tests in the future because...",
where students can again tick several statements, shows once again that the willingness
to make tests is only present in a large part of the students if there is a graded assessment
against it, or that writing automated tests is explicitly requested by the client. The following
statements could be chosen:

a. It increases the quality of my code.

b. Only if it is part of a review.

c. Only if the client asks for it.

d. No, I do not because manual testing or trying it out is just as effective.

e. No, I do not because it takes too much time.

f. No, I do not because it doesn’t add anything to the code quality

37

Figure 4.5: Willingness to make automated tests

Answers in the questionnaire are shown in Figure 4.5:

In these results we notice a lack of intrinsic willingness to write tests. Scatalon et al.
[2017a] wrote exactly our feeling at this stage: "There is a widespread agreement that novice
programmers are reluctant to conduct software testing [refs]. When it is not made compul-
sory by the instructor, students tend not to do it [ref]. Usually, to force students to conduct
testing, part of their grade depends on it. However, this imposition can be increasing even
more students’ resistance, because while they do not really appreciate the value of testing,
they can continue see it only as an unnecessary burden [ref]."

We assume that the intention to write tests is often there, but that this is often post-
poned to a test-last approach, after which it never is realised because there was no time
left. Of course this is a fairly natural phenomenon, after all, coding software is never fin-
ished, as a software engineer you abandon the software at some point because the budget
is exhausted and it meets the customers requirements. There is always an opportunity to
make the software even better, add even more functionality for the customer and thus fur-
ther postpone the creation of tests. This happens exactly with our students.

At the time the interviews and the questionnaires took place, the students are busy cre-
ating applications for external clients. We asked them how they handle testing and asked
them to tick one or more of the following statements:

a. We as a team have taken the initiative to write tests in advance (before implementa-
tion).

b. We as a team have taken the initiative to write tests afterwards (after the implemen-
tation).

c. As a team, we have been instructed to write tests in advance (before implementation).

d. As a team, we were commissioned to write tests afterwards (after the implementa-
tion).

38

Figure 4.6: Testing for an external customer

e. We do not write automated tests because we don’t have enough time.

f. We do not write automated tests because we are not graded on them.

g. We do not write automated tests because we don’t think it is necessary.

h. We do not write automated tests because the client does not ask for it.

The reactions all seem to result in postponing the making of tests. This procrastination
does not only come from students themselves, but also from customers who prefer quan-
tity (functionality) over quality. The results are shown in Figure 4.6:

When the projects were handed over to the companies, a single group appeared to have
made some tests. The majority have not gotten around to testing despite their intention to
do so.

4.6. OTHER OBSERVATIONS
During the analysis of the ’thinking aloud’ assignment, we frequently saw students strug-
gling with the same situations.

• Getting the JUnit test framework working.

• Working with Exceptions. Concepts such as throwing and catching exceptions are
not clear to students.

• Debugging and breakpoints. Even though we’ve insisted on using the debug tooling
in the IDE and while we demonstrate algorithms in debug mode step by step in every
lesson, not a single student uses debugging as an analytic tool if the output unexpect-
edly fails. Instead, students keep trying different alternative implementations.

39

The lack of skills could be due to the current Covid-19 situation. Students are not phys-
ically present at school for lessons, have little or no bond with fellow students and teach-
ers. From conversations that lecturers have with students in their position as study career
counselor, we hear that many students have difficulty developing a regular study rhythm
and motivating themselves to complete assignments. As teachers in the ’Programming 2’
course, we also saw that students were lagging considerably behind with the practice as-
signments.

During the exam for the course ’Programming 2’, we as teachers saw that students fre-
quently use StackOverflow for their programming assignment, while the knowledge from
the course ’Programming 2’ is actually assumed to be basic knowledge. Students seem to
prefer copying and pasting the code and get the method working through experimentation
rather than understanding how the concept works and writing code themselves. Students
do not realize that they ultimately fail the exam due to lack of skills and therefore lack of
time.

It is also remarkable that students do not recognizes a boolean expression as such. As
a result, we often come across code constructs where students apply a boolean expression
as condition within an if-statement, and then set another boolean variable within the exe-
cution paths for if and else. An example is shown in Listing 4.8.

public boolean someFunction() {
boolean returnValue = false;
if(value > 5) {

returnValue = true;
} else {

returnValue = false;
}
return returnValue;

}

Listing 4.8: Code construct often created by students

When we show students the easy single liner as in shown in Listing 4.9 students tend to
look surprised that this is even possible.

public boolean someFunction() {
return value > 5;

}

Listing 4.9: Code construct what teachers would like to see

40

5
CONCLUSION

How do explicit specifications, a test-first approach, and procedural guidance to convert
specifications to tests, help to improve code correctness among students?

If we fall back on this research question of this study, we can answer this question in
three parts, namely:

• How do explicit specifications help to improve code correctness among students?

We can conclude that students find explicit JML-specifications useful, at least as long
as they are made available for the exercises, and the specifications contribute to the code
correctness.

The interviews and questionnaires show that students no longer recognize the terms
JML or specifications after five months, despite that, they are still aware of the various
contracts that reveal the inner working of the software-unit and that they have to test the
boundaries of these contracts well.

Students also remember not to make assumptions about how the software should work.
Explicit specifications always seem to be complete specifications for students, while this
does not necessarily have to be the case of course. This is still overlooked by students, but
as teachers we accept this because students are still novice programmers.

The JML specifications give students a guideline in designing the tests, it gives them
an indication of which tests are needed and also helps students to code the implementa-
tion. This convenience is recognized by many students who participated in the interviews
and questionnaire. We also saw in the ’thinking-aloud’ sessions that students really use the
JML-specifications as a guideline for designing the tests and also for coding the implemen-
tation.

It is a pity that, despite the benefit students get from the specifications, students them-
selves indicate that they do not want to invest the time in drawing up the specifications so
explicitly. Some students indicate that they may want to do this in an informal commen-
tary style, but not in such a formal JML way as we have provided the specifications. Even
if we indicate that we will provide a procedural guide for writing such specifications, the
willingness still seems limited. This could be due to the fact that students think they are
only drawing up the specifications for themselves.

41

Perhaps we, as teachers, should put the drafting of explicit JML-specifications into a
practical situation where one student draws up explicit specifications from the require-
ments and shares them as a way of communication with another student who codes the
tests or implementation. In this way, explicit specification is experienced as more useful
and we get more willingness among the students

• How does a test-first approach help to improve code correctness among students?

The test-first approach certainly helps in increasing the correctness of the code. We
previously hypothesized that with such fully explicit specifications we expected little room
for a quality-enhancing effect on code correctness. The technical analysis in section 4.4.5
of the ’Milestone 6’ assignments proves that the correctness of the implementations for
which test suites have been written score significantly higher than implementations for
which no tests have been written. From the ’thinking- aloud’ sessions, we see that students
also make extensive use of the JML-specifications for implementations, even though they
do not create test suites for this.

• How does a procedural guide help to improve code correctness among students?

The procedural guide has an indirect positive effect on the code correctness of the im-
plementations. We have rarely seen students consult the guide physically in the ’thinking-
aloud’ sessions, but it appears from these recordings and the submitted elaborations of the
assignments that the steps have been completed successfully for the most part.

The interviews and questionnaire show that students certainly found the procedural
guide helpful during the learning process. However, they point out that the process of
designing the tests and writing the JUnit tests is so simple that the guide is only needed
to practice it a few times. What is unfortunate, and is apparent from the ’thinking-aloud’
recordings, is that students who are stuck for a while do not return to the procedural guide.

5.1. DISCUSSION
In general, we can say that these three components together certainly increase the qual-
ity aspect of code correctness. However, what also emerges from the research is that, even
though students know that the quality of their work is improving, they seem not to be will-
ing to invest the time and effort in testing to produce better code. The willingness to apply
testing increases if we make testing mandatory for an assignment, but if testing is only a
small part of the grade of an assessment, testing is often omitted at the cost of a small
amount of points.

We try to find a reason for this evasive test behavior. When looking at the coding be-
havior of students, we can endorse the research by Edwards [2004b] in which he states that
students get stuck in trial-and-error problem solving. We see exactly the same behavior in
our students when working on projects and assignments. We see that students often start
from an existing code snippet, found on ’stack overflow’ or from another source. Students
do not tend to use debugging functionalities but randomly change a few lines of code and
see if the output of the program is acceptable afterwards. This could be due to the fact that
programming skills are still so underdeveloped that students already think it is good if soft-
ware already does something that is in the right direction as already concluded by Kolikant

42

[2005]. Based on this, we hypothesize that as students become more proficient in program-
ming, they also become more aware of code quality and specifically its correctness.

Providing explicit JML-specifications has suppressed ’stack overflow’ copy-paste behav-
ior. This can certainly be seen as something positive. It seems that the specifications give
students a good starting point for coding, where they otherwise look for a code snippet that
does about what is expected.

For students, software seems acceptable when the program does roughly what it is sup-
posed to do. This behaviour confirms to the hypothesis of Kolikant [2005] where she states
that students are easily satisfied with incorrect software if some output seems reasonable.
According to Kolikant [2005] this is because students’ understanding of correctness is dif-
ferent from that of professionals. Also the testing methods students apply are found inade-
quate by professionals.

Despite the fact that we anticipated this behavior in advance by using the concept of
code correctness as a common thread through the lessons, we have not been able to get
students to take testing so seriously that they independently see the importance of correct
specifications and associated tests to ensure correctness as far as possible.

Fortunately, a bonus point for the exam convinced half the student population to par-
ticipate in the ’Milestone 6’ assignment. It might obscure the results a bit because it is
mainly the better students who participated in this assignment. However, this does not
affect the validity of the study in our opinion. Normally, a substantial part of the student
population will leave before february 1st. because they cannot keep up with the program-
ming skills. The number of students who drop out in the first year is approximately 50%,
which roughly corresponds to the part who did not participate in the ’Milestone 6’ assign-
ment.

Nevertheless, we do not consider our research and adapted educational program any
less valuable. It appears from the interviews and questionnaire that six months later certain
knowledge about testing and code quality, such as contracts and boundary testing, has
remained. What has failed is that students start testing on their own, driven by the fact that
they have to deliver quality code.

The coding skills of the students seem somewhat lower than in previous years, but that
can be explained by the fact that there were only a few physical classes due to COVID-
19. Many students struggled to find motivation to study during the lockdown. Of course,
this applies to some students to a greater or lesser extent than to others. Since we have
seen that many students fell short with their skills during the ’Milestone 6’ assignment, we
expect that the results will be more positive during a non-lockdown scenario with physical
lessons.

For the behavioral analysis of our students, our planning was to largely rely on semi-
structured interviews together with the ’Thinking aloud’ assignment. A considerable num-
ber of students were initially willing to participate in the student interviews. However, when
we wanted to make the appointments concrete, many students dropped out because they
were too busy with other school assignments. With the information that we were able to
retrieve from the six student interviews we conducted, we drafted a questionnaire in which
we could present the most striking matters from the interviews to a larger group of students
and ask for a response. To increase the willingness to participate in this questionnaire, we
raffled a gift voucher among the participants. In the end, twenty students completed the
questionnaire. With which we have been able to substantiate certain points from the in-

43

terview more strongly. We do not expect to receive unreliable answers because of the gift
voucher raffle because the open questions of all participants were filled in with great detail.

Finally, we would like to add to the fact that during student project work in which stu-
dents really make software for companies, the quantity of requirements, the making of
functionality, always takes precedence over quality and therefore testing. It is not the teach-
ers who direct this behavior, but especially the professionals from the business community
who make testing subordinate. This could be because companies often have students cre-
ate greenfield prototypes for which some bugs are acceptable and do not require testing.
We as educators need to become more controlling in this and ensure that automated testing
becomes part of the coding of functionality, even if students make prototypes for compa-
nies.

5.2. FUTURE WORK
As teachers, our ultimate goal is of course to properly train future professionals. The teach-
ing of code quality and the adequate testing of developed software is indispensable in this
regard. Although we are convinced that conducting the lessons on code quality, specifica-
tions and testing in this way positively contributes to the development of the students, the
hurdle of intrinsic testing behavior has not yet been overcome.

We think that Kolikant [2005] has already defined a good starting point to analyze where
the test-avoiding behavior comes from. It seems obvious that when teaching a good def-
inition of correctness, we should encourage students in intrinsic testing behaviour. On
the other hand, with the new set-up of the teaching material, we have already made cor-
rectness very explicit and frequent, which still does not motivate students to start testing
themselves.

Our hypothesis that when students become more proficient in programming, they also
become more aware of code quality and specifically its correctness is worth investigation.
If our hypothesis is correct we should accept that beginning students do not yet have the
ability to code very quality-consciously. We should investigate whether there is a differ-
ence in quality awareness or willingness to test in later years after coding skills are better
developed.

Also it is worth investigating at what stage of the learning progress providing knowledge
about quality and testing is most efficient in education. Now we apply this knowledge at
the same time basic programming skills are learned. We should investigate whether this
is the best time, or that it is better to postpone this teaching material about quality and
testing to a later moment when the basic programming skills are more developed.

44

BIBLIOGRAPHY

Kent Beck. Extreme Programming Explained: Embrace Change. Addison-Wesley Publish-
ing Company, 1999. 4

Kent Beck. Test-driven development: by example. Addison-Wesley Professional, 2003. 4

Thirumalesh Bhat and Nachiappan Nagappan. Evaluating the efficacy of test-driven de-
velopment: Industrial case studies. In Proceedings of the 2006 ACM/IEEE International
Symposium on Empirical Software Engineering, ISESE ’06, page 356–363, New York, NY,
USA, 2006. Association for Computing Machinery. ISBN 1595932186. doi: 10.1145/
1159733.1159787. URL https://doi.org/10.1145/1159733.1159787. 5

Lex Bijlsma, Niels Doorn, Harrie Passier, Harold Pootjes, and Sylvia Stuurman. How do stu-
dents test software units? In 2021 IEEE/ACM 43rd International Conference on Software
Engineering: Software Engineering Education and Training (ICSE-SEET), pages 189–198,
2021. doi: 10.1109/ICSE-SEET52601.2021.00029. 1

Wilson Bissi, Adolfo Gustavo Serra Seca Neto, and Maria Claudia Figueiredo Pereira Emer.
The effects of test driven development on internal quality, external quality and produc-
tivity: A systematic review. Information and Software Technology, 74:45 – 54, 2016.
ISSN 0950-5849. doi: https://doi.org/10.1016/j.infsof.2016.02.004. URL http://www.
sciencedirect.com/science/article/pii/S0950584916300222. 5

Chetan Desai, David Janzen, and Kyle Savage. A survey of evidence for test-driven develop-
ment in academia. ACM SIGCSE Bulletin, 40(2):97–101, 2008a. 1

Chetan Desai, David Janzen, and Kyle Savage. A survey of evidence for test-driven develop-
ment in academia. ACM SIGCSE Bulletin, 40(2):97–101, June 2008b. ISSN 0097-8418.
doi: 10.1145/1383602.1383644. URL https://dl.acm.org/doi/10.1145/1383602.
1383644. 3, 27

Niels Doorn. How can more students become test infected, 07 2018. 3

Stephen H. Edwards. Using software testing to move students from trial-and-error to
reflection-in-action. SIGCSE Bull., 36(1):26–30, March 2004a. ISSN 0097-8418. doi:
10.1145/1028174.971312. URL https://doi.org/10.1145/1028174.971312. 1, 2

Stephen H. Edwards. Using software testing to move students from trial-and-error to
reflection-in-action. In Proceedings of the 35th SIGCSE Technical Symposium on
Computer Science Education, SIGCSE ’04, page 26–30, New York, NY, USA, 2004b. As-
sociation for Computing Machinery. ISBN 1581137982. doi: 10.1145/971300.971312.
URL https://doi.org/10.1145/971300.971312. 42

45

https://doi.org/10.1145/1159733.1159787
http://www.sciencedirect.com/science/article/pii/S0950584916300222
http://www.sciencedirect.com/science/article/pii/S0950584916300222
https://dl.acm.org/doi/10.1145/1383602.1383644
https://dl.acm.org/doi/10.1145/1383602.1383644
https://doi.org/10.1145/1028174.971312
https://doi.org/10.1145/971300.971312

Stephen H. Edwards and Zalia Shams. Do student programmers all tend to write the same
software tests? In Proceedings of the 2014 Conference on Innovation; Technology in
Computer Science Education, ITiCSE ’14, page 171–176, New York, NY, USA, 2014. Asso-
ciation for Computing Machinery. ISBN 9781450328333. doi: 10.1145/2591708.2591757.
URL https://doi.org/10.1145/2591708.2591757. 3, 27, 34

Yifat Ben-David Kolikant. Students’ alternative standards for correctness. In Proceedings
of the First International Workshop on Computing Education Research, ICER ’05,
page 37–43, New York, NY, USA, 2005. Association for Computing Machinery. ISBN
1595930434. doi: 10.1145/1089786.1089790. URL https://doi.org/10.1145/
1089786.1089790. 42, 43, 44

Laura Marie Leventhal, Barbee Eve Teasley, and Diane Schertler Rohlman. Analyses
of factors related to positive test bias in software testing. International Journal of
Human-Computer Studies, 41(5):717 – 749, 1994. ISSN 1071-5819. doi: https://doi.org/
10.1006/ijhc.1994.1079. URL http://www.sciencedirect.com/science/article/
pii/S1071581984710792. 3

Tilman Michaeli and Ralf Romeike. Addressing Teaching Practices Regarding Software
Quality: Testing and Debugging in the Classroom. In Proceedings of the 12th Workshop
on Primary and Secondary Computing Education, pages 105–106, Nijmegen Nether-
lands, November 2017. ACM. ISBN 978-1-4503-5428-8. doi: 10.1145/3137065.3137087.
URL https://dl.acm.org/doi/10.1145/3137065.3137087. 1, 3

Glenford J. Myers, Corey Sandler, and Tom Badgett. The art of software testing. John Wiley
& Sons, Hoboken and N.J, 3rd ed edition, 2012. 2, 3

M. Pancur, M. Ciglaric, M. Trampus, and T. Vidmar. Towards empirical evaluation of test-
driven development in a university environment. In The IEEE Region 8 EUROCON 2003.
Computer as a Tool., volume 2, pages 83–86 vol.2, 2003. 5, 27

Nadia Polikarpova, Carlo A Furia, Yu Pei, Yi Wei, and Bertrand Meyer. What good are strong
specifications? In 2013 35th International Conference on Software Engineering (ICSE),
pages 262–271. IEEE, 2013. 6, 8

Giuseppe Scanniello, Simone Romano, Davide Fucci, Burak Turhan, and Natalia Juristo.
Students’ and professionals’ perceptions of test-driven development: A focus group
study. In Proceedings of the 31st Annual ACM Symposium on Applied Computing, SAC
’16, page 1422–1427, New York, NY, USA, 2016. Association for Computing Machinery.
ISBN 9781450337397. doi: 10.1145/2851613.2851778. URL https://doi.org/10.1145/
2851613.2851778. 5

Lilian Passos Scatalon, Ellen Francine Barbosa, and Rogerio Eduardo Garcia. Challenges
to integrate software testing into introductory programming courses. In 2017 IEEE
Frontiers in Education Conference (FIE), pages 1–9, 2017a. doi: 10.1109/FIE.2017.
8190557. 38

Lilian Passos Scatalon, Ellen Francine Barbosa, and Rogerio Eduardo Garcia. Challenges
to integrate software testing into introductory programming courses. In 2017 IEEE
Frontiers in Education Conference (FIE), pages 1–9. Ieee, 2017b. 2

46

https://doi.org/10.1145/2591708.2591757
https://doi.org/10.1145/1089786.1089790
https://doi.org/10.1145/1089786.1089790
http://www.sciencedirect.com/science/article/pii/S1071581984710792
http://www.sciencedirect.com/science/article/pii/S1071581984710792
https://dl.acm.org/doi/10.1145/3137065.3137087
https://doi.org/10.1145/2851613.2851778
https://doi.org/10.1145/2851613.2851778

Jeroen J. G. Van Merrienboer and Hein P. M. Krammer. Instructional strategies and tac-
tics for the design of introductory computer programming courses in high school.
Instructional Science, 16(3):251–285, September 1987. ISSN 1573-1952. doi: 10.1007/
BF00120253. URL https://doi.org/10.1007/BF00120253. 4

J.J.G. van Merriënboer and P.A. Kirschner. Ten Steps to Complex Learning: A Systematic
Approach to Four-component Instructional Design. Lawrence Erlbaum Associates, 2007.
ISBN 978-0-8058-5792-4. URL https://books.google.nl/books?id=YDWfs7eVJW8C.
4, 9, 19, 22, 24

47

https://doi.org/10.1007/BF00120253
https://books.google.nl/books?id=YDWfs7eVJW8C

APPENDIX A: PROCEDURAL GUIDE

Black-box Testen

Procedure testcases opstellen

VOORAF:

1. Maak het project testgereed (testlibraries, testfolder).

2. Maak een lege implementatie zonder logica voor de methode die je gaat ontwikkelen.
De signatuur komt uit de specificatie. Neem de specificatie ook over als documen-
tatie voor de implementatie.

3. Maak een test-class met de naamgeving <ClassToTest>Test voor de class waar je testen
voor gaat definiëren (kan misschien automatisch met sneltoets afhankelijk van de
IDE).

ONTWERP DE TEST:

4. Bedenk voor ieder @subcontract minimaal 1 test.

5. Verzin voor elk van deze test een testwaarde die voldoet aan @requires én definieer
hierbij een orakel. Denk ook aan boundaries. Vaak zijn er per subcontract meerdere
testcases nodig.

CODEER DE TEST:

6. Schrijf de testmethode:

• gebruik de @Test annotatie.

– Indien je een JML:@signals wil testen gebruik je
@Test(expected = <Exception>.class).

• Bepaal de testmethode-signatuur: public void <test-method-name>(). Laat in
de <test-method-name> terugkomen:

– welke methode je test.

– welke testcase je test.

– welke Exception of postconditie je verwacht (orakel).

• Ga door met de body van de test, stappen 7-9.

7. Arrange: Zet de waarden en objecten klaar die je nodig hebt voor de test (uit stap 5).

8. Act: Voer de methode uit. Dit is de methode die je beschreven hebt in de testmethode
signatuur.

48

9. Assert: Controleer of de postconditie overeenkomt met het orakel uit stap 5. Als je
een Exception als orakel hebt schrijf je de assertation in de @Test(expected =)
annotatie.

10. Indien er nog meer tests zijn voor dit subcontract, herhaal vanaf stap 5.

11. Indien er nog meerdere subcontracten te testen zijn, herhaal vanaf stap 4.

MAAK DE IMPLEMENTATIE, DE TESTS ZIJN GECODEERD:

12. Voer de tests uit, je ziet dat er tests falen

13. Maak/wijzig de implementatie stap voor stap ga telkens naar stap 12. Als alle tests
slagen is de methode gereed en voldoe je aan de specificaties die in de tests zijn vast-
gelegd.

BEGRIPPENLIJST:

Preconditie Situatie waaraan voldaan moet worden voordat de methode uitgevoerd wordt.
Postconditie Situatie die actief is na uitvoering van de methode.
Orakel Een verwachte uitkomst van een test die onveranderlijk is.
Inputdomein Alle mogelijke (combinaties) van inputwaarden.
Equivalentieklassen Precondities die op eenzelfde wijze een postconditie verkrijgen.
Boundaries Grenswaarden van het inputdomein.

JML NOTATIES:

@subcontract Een partitie van pre- met bijbehorende postconditie1.
@requires Preconditie waaraan voldaan moet worden voor de methode wordt uitgevoerd.
@ensures Postconditie welke de situatie aangeeft zoals die na uitvoer van de methode geldt.
@signals Een exceptie die opgeworpen wordt.
@non_null Een parameter die geen null verwijzing mag hebben.

1@subcontract behoort niet tot de set van JML annotaties, deze is als alternatief van @also toegevoegd
om duidelijker onderscheid tussen partities te kunnen maken.

JUNIT ANNOTATIES:

@BeforeClass Code die uitgevoerd wordt vóórdat alle testcases in deze test-class gestart worden.
@AfterClass Code die uitgevoerd wordt nadat alle testcases in deze test-class uitgevoerd zijn.
@Before Code die telkens vóór iedere testcase uitgevoerd wordt.
@After Code die telkens na iedere testcase uitgevoerd wordt.
@Test De daadwerkelijke testcase. Voor iedere test-partitie minimaal 1 testcase.
@Test(expect. . .) Een testcase waarin een expected Exception aanwezig is (JML:@signals).

49

APPENDIX B: LESSON MATERIAL

This appendix shows the lesson material used for the lectures and the practice assignments
between lessons. The instructor notes are included beneath the sheets so that can be seen
what the focus points are.

Lesson 1 - materials:

Training 9 december Leerdoelen:

• Wat is kwaliteit in code

• Onderscheid kunnen maken in kwaliteitsaspecten onderhoudbaarheid en correctheid

• Kunnen bedenken van zo compleet mogelijke testsuits (verkrijgen van inzicht)

• Lezen en begrijpen van expliciete specificaties in JML

• Het kunnen opstellen van testcases op basis van specificaties in JML, dmv procedural guide

50

Laat studenten zaken opsommen in het maken van code waaraan je kwaliteit kunt bepalen. Gebruik
Mentimeter wordcloud. De genoemde zaken gaan we daarna uitschrijven in de volgende sheet.

51

Toevoegen nav input studenten. Zorg iniedersgeval voor:

• Goede naamgeving variabelen (intern)

• Werking zoals verwacht (extern)

• Begrijpbare code, goed leesbaar (intern)

• Goede exceptions bij onjuiste input (extern)

Focus voor nu: EXTERNE KWALITEIT!

Wat heb je getest:

• verjaardag moet nog komen dit jaar

• verjaardag is al geweest dit jaar

• wat als je verjaardag in de toekomst ligt? Kan dit eigenlijk wel, of moet dit een Exception
opleveren?

52

Welke waarden heb je gebruikt? Je eigen geboortedatum? Kan je dit gebruiken in geautomatiseerde
tests?

Maar nog belangrijker: Hoe kan je correctheid analyseren als niet gespecificeerd is wat de
methode moet doen! Stel dat CalculateAge de leeftijd in maanden zou moeten berekenen. Nu
baseren we de specificaties op aannames!

Discussie: hoe weten we wat de methode doet? Naamgeving van de methode, maar hoe expliciet
onthult deze de werking.

Discussie: laat studenten verschillende situaties voor dateOfBirth onderscheiden. Wat is wel toeges-
taan, en wat niet? Mag een geboortedatum in de toekomst liggen? Uitgangspunt: LocalDate is altijd
geldig, het is dus niet mogelijk een datum van 31 november te zetten. Dit valt dus buiten de verant-
woordelijkheid van daysUntilNextBirthday.

53

Discussie: Het kan nooit 0 dagen duren tot je volgende verjaardag. Taalkundig verhult de metho-
denaam dat het aantal dagen minimaal 1 is en maximaal 1 jaar duurt als je precies deze methode
uitvoert op je verjaardag. Maar is deze aanname juist? Hoe lang duurt 1 jaar. . . . 365 dagen? Als je
een schrikkeldag passeert zou je volgende verjaardag best eens 366 kunnen zijn. Maar, als je op een
schrikkeldag geboren bent zou je volgende verjaardag best meer als 1000 dagen kunnen zijn.

Een probleemomschrijving in natuurlijke taal kunnen we expliciteren naar specificaties in JML (dit
expliciteren wordt ook wel ‘design by contract’ genoemd). Feitelijk leggen we een contract vast
waarbij de aanroeper van de methode zich moet houden aan de pre-condities en de methode zich
vervolgens houdt aan de postcondities.

54

UITLEGGEN:
Waarom formeler: minder kans op misinterpretatie door expliciet, pre-, post-condities, exceptions
zo eenduidig mogelijk interpreteerbaar te formuleren. Pre-condities is alles waaraan voldaan moet
worden voordat de methode uitgevoerd wordt Post-condities, wat ‘het’ uitvoeren van de methode
tot gevolg heeft (hoeft niet een returnwaarde te zijn, maar ook verandering van state in een object
bijv.) Exceptions, indien de bewerking een uitzondering veroorzaakt Doel is nu niet het opstellen
van de specificaties, maar het begrijpen van de notatie en interpreteren van de specificaties.

Discussie: hoe weten we wat de methode doet? Naamgeving van de methode, maar hoe expliciet
onthult deze de werking. Geeft de description voldoende informatie om zonder aannames te maken
de implementatie te maken? Nee, we hebben meer informatie nodig.

55

Een geïnstantieerde LocalDate is altijd geldig, een datum van 31 november is dus niet mogelijk.
Dit zegt echter niets over de geldigheid van de LocalDate voor onze methode! Als de methode
aangeroepen wordt MOET aan de preconditie voldaan worden. Indien niet voldaan wordt aan
de preconditie wordt een ‘exception’ opgegooid. Exceptions worden expliciet gespecificeerd en
moeten dus ook alszodanig geïmplementeerd worden.

56

Hoe gaan we nu testen adhv de specificaties. Laat studenten ‘testregels’ verzinnen. Welke verschil-
lende situaties kun je onderscheiden:

• dateOfBirth > now

• dateOfBirth == null

• Al jarig geweest dit jaar, Nog jarig dit jaar, Vandaag jarig

• Er is geen 29 februari aanwezig tot de volgende verjaardag

• Er is wel 29 februari aanwezig tot volgende verjaardag

• Geboren op 29 februari

57

UITLEGGEN: Expliciet aangegeven subcontracten dienen getest te worden. Meerdere subcontracten
(partities) zouden samen het inputdomein moeten afdekken. Doel is nu niet het opstellen van de
specificaties, maar het begrijpen van de notatie en interpreteren van de specificaties.

Ongeldige waarde, moet een exception opgooien.

58

Ongeldige waarde, moet een exception opgooien.

59

Uiteraard geldt dit alleen in de situatie dat er geen schrikkeljaren bestaan!
Discussie:

• Welke situaties kunnen we onderscheiden in geval dat er 29 februari gepasseerd wordt.

• Wat als ik op 29 februari jarig ben!

60

61

62

63

64

Lesson 2 - materials:

Training 17 december
LEERDOELEN:

• Het nut begrijpen van het opstellen van geautomatiseerde tests.

• Het schrijven van testcode in Junit -> Arrange, Act, Assert.

• Junit essentials: Setup, Teardown, TestSuites.

• Stap 2 uit de procedural guide: testcases uitschrijven in code.

Handmatig testen kost veel tijd. Automatiseren geeft ook de mogelijkheid tot regressietesten. Black-
box tests worden gebruikt bij TDD. TDD is erg ‘hip’, XP is erop gebaseerd. Stappen zijn: eerst testen
schrijven, daarna de implementatie opbouwen totdat de testen slagen. Hierna refactoren zodat
de code netjes en onderhoudbaar is. Wij gaan in de module programmeren 2 deze methodiek

65

toepassen. De nadruk blijft nog even liggen op externe kwaliteit (correctheid) en niet het refactoren
om de interne kwaliteit te verhogen (onderhoudbaarheid). Bij ‘Whitebox’ tests gaan we proberen
alle codepaden in de implementatie te bewandelen. Risico is groot dat je fouten in de implemen-
tatie mee overneemt in de tests omdat je het orakel gaat baseren op de implementatie. Hierdoor
bestaat er een grotere kans afbreuk te doen aan externe kwaliteit. Blackbox tests hoeven Whitebox
tests niet uit te sluiten! Echter beperken we ons in deze module tot Blackbox tests.

We gaan in de les alleen unittests maken met behulp van Assertions. setup en teardown zijn meth-
oden welke na afloop en voor de test uitgevoerd worden. Soms kun je codeduplicatie hiermee
voorkomen in testcode. Hoe dit werkt kun je zelf uitzoeken in de Junit documentatie. Met Test-
Suites kun je testen organiseren, zie Documentatie

De eisen in natuurlijke taal lijken duidelijk, ze zijn echter niet 100% correct. Kunnen studenten dit
vinden? Er worden zeker aannames vereist, als voorbeeld: als onvoldoende behoort tot 5.5 en niet
inclusief) wat voor woordbeoordeling krijg je dan bij een 10? Wat als de cijfer-beoordelingen buiten
bereik vallen? Daarom specificatie in JML. (herhaling)

66

Het gebruik maken van expliciet opgestelde specificaties zal in de praktijk weinig voorkomen. We
doen dit nu om studenten bewust te laten worden om precieze definities te hanteren en om niet te
gemakkelijk aannames te doen. Op het moment dat bewustwording is aangeleerd is het eenvoudi-
ger de stap te maken naar specificaties opstellen. Het stappenplan is een trainingsmiddel om tests
schrijven te leren automatiseren. Hierbij ook bewust te zijn van equivalentieklassen en grenswaar-
den. Laat de procedure zien en doorloop deze voordat we verdergaan.

We gaan blackbox tests maken en we gaan deze tests toepassen zoals dit ook bij TDD gebeurt. De
specificatie kunnen we gewoon boven de implementatie plakken, zodoende hebben we meteen
goede documentatie. De specificatie is in dit voorbeeld nog niet volledig, op blackboard is de
volledige specificatie te vinden van deze casus. Laat deze in de les even zien.

67

We gaan black-box tests maken en we gaan deze tests toepassen zoals dit ook bij TDD gebeurt. Ga
op de methode staan en druk <CTRL><ALT>T. Laat studenten bedenken waarom je tests gescheiden
van de implementatie wil opslaan. Je wil de tests in de deploymentomgeving niet mee distribueren.

Uitleg verschillende annotaties. Alle annotaties buiten @Test laten we nog even buiten beschouwing,
hiermee kunnen we codeduplicatie voorkomen maar we moeten wel goed opletten wat we hiermee
doen! Let op dat je bijvoorbeeld geen afhankelijkheden tussen de verschillende testen gaat creëren.
Focus nu op @Test -> definitie van de testcase.

68

We gaan blackbox tests maken en we gaan deze tests toepassen zoals dit ook bij TDD gebeurt. De
specificatie kunnen we gewoon boven de implementatie plakken, zodoende hebben we meteen
goede documentatie.

69

Deze drie stappen gaan we precies zo en in deze volgorde uitvoeren per testsituatie. Leer jezelf aan
deze stappen steeds als documentatie in je testcode te laten terugkomen!

We gaan blackbox tests maken en we gaan deze tests toepassen zoals dit ook bij TDD gebeurt. Het
subcontract uit specificatie kunnen we gewoon boven de test plakken, zodoende hebben we meteen
goede documentatie. Hetzelfde doen we voor de 1,0 waarde.

70

We gaan blackbox tests maken en we gaan deze tests toepassen zoals dit ook bij TDD gebeurt. De
specificatie kunnen we gewoon boven de implementatie plakken, zodoende hebben we meteen
goede documentatie.

We gaan blackbox tests maken en we gaan deze tests toepassen zoals dit ook bij TDD gebeurt. De
specificatie kunnen we gewoon boven de test plakken, zodoende hebben we meteen goede docu-
mentatie. Hetzelfde doen we voor de 1,0 waarde.

71

We gaan blackbox tests maken en we gaan deze tests toepassen zoals dit ook bij TDD gebeurt. De
specificatie kunnen we gewoon boven de implementatie plakken, zodoende hebben we meteen
goede documentatie.

We gaan blackbox tests maken en we gaan deze tests toepassen zoals dit ook bij TDD gebeurt. De
specificatie kunnen we gewoon boven de test plakken, zodoende hebben we meteen goede docu-
mentatie. Hetzelfde doen we voor de 0,9 waarde.

72

We gaan blackbox tests maken en we gaan deze tests toepassen zoals dit ook bij TDD gebeurt. De
specificatie kunnen we gewoon boven de implementatie plakken, zodoende hebben we meteen
goede documentatie.

We gaan blackbox tests maken en we gaan deze tests toepassen zoals dit ook bij TDD gebeurt. De
specificatie kunnen we gewoon boven de implementatie plakken, zodoende hebben we meteen
goede documentatie.

73

We gaan blackbox tests maken en we gaan deze tests toepassen zoals dit ook bij TDD gebeurt. De
specificatie kunnen we gewoon boven de test plakken, zodoende hebben we meteen goede docu-
mentatie. Hetzelfde doen we voor de 10,1 waarde.

Na het definiëren van de tests zien we dat de tests falen, logisch want de implementatie moet nog
gemaakt worden.

74

Na het definiëren van de tests zien we dat de tests falen, logisch want de implementatie moet nog
gemaakt worden. De implementatie kun je stap voor stap maken en aan het resultaat van de tests
zie je je voortgang.

Als alle tests slagen is je implementatie gereed.

75

Laat studenten bedenken wat er mis gaat als je op deze manier tests gaat vereenvoudigen. -> Je in-
troduceert complexiteit en gaat de voorziene implementatie integreren in de test. Dit vergroot niet
alleen het risico op onjuiste tests. Tijdens het maken van de implementatie is de verleiding heel
groot om logica gebruikt in de test over te gaan nemen in de implementatie. Op deze manier slagen
de tests altijd, maar wat kun je dan zeggen over de externe kwaliteit? Ook geven losse tests meer
gericht aan wat er misgaat in de implementatie.

Details staan in de opdrachtomschrijving.

76

Sommige IDE’s werken iets beter samen met bepaalde versies testframeworks. Hierdoor is het
handig met een ‘leeg’ project te proberen wat het beste werkt voor jouw IDE. TMCBeans die wij
gebruiken, is een aangepaste Netbeans variant die niet fijn samenwerkt met JUnit 5. Je mag best
voor een Maven project kiezen, maar dan moet je je testframework configureren in de Maven con-
figuratie. Ant is het meest laagdrempelig.

77

78

APPENDIX C: THE ’MILESTONE 6’
ASSIGNMENT INSTRUCTIONS

Milestone 6 – Testopdracht.
Algemeen:
Lees voordat je aan de opdracht begint (niet op dezelfde dag dat je met je partner afspreekt er aan te
gaan werken) als tweetal eerst de opdracht aandachtig door. Zijn er nog onduidelijkheden of heb je
andere vragen over de opdracht, stuur dan een bericht via Teams aan Arno Broeders (geldt voor alle
groepen). Ook in de vakantie is hij bereikbaar, reactie binnen één dag, als je geluk hebt snel, heb je
geen reactie binnen een uur, wacht dan gewoon rustig af.

Voor de groepsopdracht moeten een aantal methoden gemaakt worden die verantwoordelijk
zijn voor validatie en formattering van gegevens. Uiteraard willen wij als software-engineers een
goede kwaliteit applicatie (Codecademy app) opleveren en hierin zo goed mogelijk borgen dat de
validatie en formattering correct werkt en blijft werken.

Om deze milestone uit te werken zijn er 4 methoden in losse Java class-files aangeleverd, in-
clusief uitgebreide JML specificaties. Voor deze methoden moeten JUnit testen geschreven gaan
worden.

Zoals we al weten uit de les, is testen een essentieel onderdeel van het ontwikkelen van een
applicatie. Als je niet test, kun je niets zeggen over de kwaliteit van je product en heeft je product
een grote kans om te falen (met vaak hoge kosten). Het wel goed testen levert dus een beloning op.

Door het afronden van deze milestone kunnen jullie als beloning een individueel bonuspunt
verdienen op het programmeercijfer voor de Codecademy opdracht. Je verdient dit bonuscijfer per
deelnemend koppel en niet meteen per groep! Als beide koppels in de groep hun opdracht inlev-
eren krijgt iedereen in de groep dus het bonuspunt. Na het inleveren van deze milestone kun je de
implementatie en de tests meteen één-op-één integreren in je groepsopdracht. Doe dit echter pas
na het inleveren van deze milestone!

Hoe:
Dit is een ‘Think-aloud pair-programming’ opdracht zoals je ook bij de ‘e12-weerstanden’ weektaak

in programmeren 1 uitgevoerd hebt.
Je moet aan de volgende belangrijke voorwaarden voldoen:

• Een pair of koppel zijn twee studenten, dus geen drie of vier. Als je geen koppel kunt vormen
neem je contact op met je docent. Uitgaande van projectgroepen van vier studenten, heeft
iedere groep dus twee koppels.

• Je verdeelt de vier methoden waar tests voor moeten worden gemaakt over de twee koppels.
Met twee koppels in jouw groep maak je dus complete testsets voor alle vier de methoden.
Hiermee is niet gezegd dat er maar vier methoden in het project getest moeten worden, kijk
daar aandachtig waar je kwaliteit door middel van tests kunt borgen door zelf de specificaties
uit de beschrijving te halen. Dit valt echter buiten deze Milestone opdracht!

79

• Ieder koppel begint met het zo compleet mogelijk maken van twee JUnit testsets op basis
van de specificaties. Je gebruikt hiervoor het stappenplan wat we ook in de les gebruikt
hebben. Je vindt het op blackboard bij les 8. Hoe pak je dit aan: Een praktische oplossing
tijdens het maken van de opdracht zou kunnen zijn dat één student het stappenplan bijhoudt
en de andere student daarbij aanstuurt. Na het afronden van één testset draai je de rollen om.
Uiteraard mag je hier ook van afwijken.

• De methoden met specificaties zijn aangeleverd in vier java bestanden. Voor deze milestone-
opdracht verander je de klassenamen niet en laat deze methoden dus in de opgegeven klassen
staan! Je download ze vanaf blackboard, ze staan bij deze milestone-opdracht.

• Voor iedere gekozen (in totaal twee) implementatieklasse maak je één testklasse met daarin
alle tests voor die ene methode. Kijk voor de naamgeving van de testklasse in stap 3 van het
stappenplan.

• Je maakt een schermopname van je ontwikkelomgeving tijdens het uitwerken en je neemt
daarbij ook het gesprek met je medestudent op. Denk hardop en laat vooral blijken hoe je de
verschillende stappen toepast. Laat vooral je onderbouwing horen waarom je iets doet. Val
elkaar gerust in de reden als je denkt dat iets anders of beter kan.

• Pas nadat je de twee testsets hebt gecodeerd begin je aan de implementatie van de metho-
den. Je hebt dus eerst twee sets van falende testen op dat moment.

• De twee andere methoden (de methoden waarvoor je niet de testsets hebt gemaakt), die im-
plementeer je ook. Je mag voor deze twee methoden zelf beslissen of je wèl of géén tests
vooraf maakt.

• Het opzetten van het project en importeren van de libraries en de gegeven klassen hoef je niet
te verwerken in de video-opname. Dit kun je van tevoren klaarzetten.

Inleveren:

• 2 testklassen met voldoende tests gemaakt op basis van de JML specificaties en het stappen-
plan.

• 4 implementaties van alle gegeven methoden. De 2 extra methoden mag je op basis van eigen
inzicht coderen. Heb je hiervoor ook tests gemaakt, dan lever je deze ook extra in.

• Een link naar de video-opname van je ontwikkelscherm, inclusief audio waarop jullie samen-
werking als koppel goed te horen is.

De inleverlink staat op blackboard bij de overige milestones. Van ieder koppel levert één student de
materialen in:

• Laat in de omschrijving achter met wie je hebt samengewerkt.

• Laat in de omschrijving de url achter waar je video-opname te bekijken is, zorg dat deze een
half jaar beschikbaar blijft en dat Arno, Ruud en Dion hier toegang tot hebben.

• Voeg een zip bestand toe met de uitgewerkte Java bestanden (tests en implementatie).

80

	Acknowledgements
	Summary
	Introduction
	Background and Related Work
	Research Questions and Methodology
	Results
	Conclusion
	Bibliography
	Appendix A: Procedural Guide
	Appendix B: Lesson Material
	Appendix C: The 'Milestone 6' assignment instructions

